1
|
Bai X, Zhou Z, Zheng Z, Li Y, Liu K, Zheng Y, Yang H, Zhu H, Chen S, Pan H. Development and evaluation of machine learning models for predicting large-for-gestational-age newborns in women exposed to radiation prior to pregnancy. BMC Med Inform Decis Mak 2024; 24:174. [PMID: 38902714 PMCID: PMC11188254 DOI: 10.1186/s12911-024-02556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION The correlation between radiation exposure before pregnancy and abnormal birth weight has been previously proven. However, for large-for-gestational-age (LGA) babies in women exposed to radiation before becoming pregnant, there is no prediction model yet. MATERIAL AND METHODS The data were collected from the National Free Preconception Health Examination Project in China. A sum of 455 neonates (42 SGA births and 423 non-LGA births) were included. A training set (n = 319) and a test set (n = 136) were created from the dataset at random. To develop prediction models for LGA neonates, conventional logistic regression (LR) method and six machine learning methods were used in this study. Recursive feature elimination approach was performed by choosing 10 features which made a big contribution to the prediction models. And the Shapley Additive Explanation model was applied to interpret the most important characteristics that affected forecast outputs. RESULTS The random forest (RF) model had the highest average area under the receiver-operating-characteristic curve (AUC) for predicting LGA in the test set (0.843, 95% confidence interval [CI]: 0.714-0.974). Except for the logistic regression model (AUC: 0.603, 95%CI: 0.440-0.767), other models' AUCs displayed well. Thereinto, the RF algorithm's final prediction model using 10 characteristics achieved an average AUC of 0.821 (95% CI: 0.693-0.949). CONCLUSION The prediction model based on machine learning might be a promising tool for the prenatal prediction of LGA births in women with radiation exposure before pregnancy.
Collapse
Affiliation(s)
- Xi Bai
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Department of Endocrinology, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zhibo Zhou
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Zeyan Zheng
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yansheng Li
- DHC Mediway Technology CO., Ltd, Beijing, China
| | - Kejia Liu
- DHC Mediway Technology CO., Ltd, Beijing, China
| | | | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Tang J, Huang J, He X, Zou S, Gong L, Yuan Q, Peng Z. The prediction of in-hospital mortality in elderly patients with sepsis-associated acute kidney injury utilizing machine learning models. Heliyon 2024; 10:e26570. [PMID: 38420451 PMCID: PMC10901004 DOI: 10.1016/j.heliyon.2024.e26570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Background Sepsis-associated acute kidney injury (SA-AKI) is a severe complication associated with poorer prognosis and increased mortality, particularly in elderly patients. Currently, there is a lack of accurate mortality risk prediction models for these patients in clinic. Objectives This study aimed to develop and validate machine learning models for predicting in-hospital mortality risk in elderly patients with SA-AKI. Methods Machine learning models were developed and validated using the public, high-quality Medical Information Mart for Intensive Care (MIMIC)-IV critically ill database. The recursive feature elimination (RFE) algorithm was employed for key feature selection. Eleven predictive models were compared, with the best one selected for further validation. Shapley Additive Explanations (SHAP) values were used for visualization and interpretation, making the machine learning models clinically interpretable. Results There were 16,154 patients with SA-AKI in the MIMIC-IV database, and 8426 SA-AKI patients were included in this study (median age: 77.0 years; female: 45%). 7728 patients excluded based on these criteria. They were randomly divided into a training cohort (5,934, 70%) and a validation cohort (2,492, 30%). Nine key features were selected by the RFE algorithm. The CatBoost model achieved the best performance, with an AUC of 0.844 in the training cohort and 0.804 in the validation cohort. SHAP values revealed that AKI stage, PaO2, and lactate were the top three most important features contributing to the CatBoost model. Conclusion We developed a model capable of predicting the risk of in-hospital mortality in elderly patients with SA-AKI.
Collapse
Affiliation(s)
- Jie Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
| | - Jian Huang
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Xin He
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sijue Zou
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Gong
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiongjing Yuan
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National International Joint Research Center for Medical Metabolomices, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Medical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Organ Fibrosis Key Lab of Hunan Province, Central South University, Changsha, Hunan, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National International Joint Research Center for Medical Metabolomices, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|