1
|
Liu L, Liu C, Chen R, Feng R, Zhou Y, Wang L, Hong J, Cao L, Lu Y, Dong X, Xia M, Ding B, Qian L, Zhou W, Gui Y, He W, Wang Q, Han X, Lu A, Zhang X. Associations of ambient air pollution and daily outpatient visits for pediatric atopic dermatitis in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117231. [PMID: 39490101 DOI: 10.1016/j.ecoenv.2024.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/03/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Limited evidence was available on ambient air pollution and pediatric atopic dermatitis (AD). The study aimed to evaluate the associations between short-term exposure to air pollutants and outpatient visits for pediatric AD. From 2016-2018, we collected data on six criteria air pollutants (PM2.5, PM10, NO2, SO2, CO and O3) and daily outpatient visits for pediatric AD in 66 hospitals, covering all districts in Shanghai, China. The over-dispersed Poisson generalized additive model (GAM) was applied to fit the associations of criteria air pollutants with hospital visits. Two-pollutant models were fitted and stratified analyses by sex, age and season were conducted. We identified 477,833 outpatient visits for pediatric AD. Each interquartile range (IQR) increase in PM2.5 (IQR: 30.9 μg/m3), PM10 (8.9 μg/m3), NO2 (25.5 μg/m3), SO2 (5.8 μg/m3) and CO (0.283 mg/m3) on the concurrent day was significantly associated with increments of 2.08 % (95 % CI: 0.53 %, 3.65 %), 2.53 % (95 % CI: 0.87 %, 4.22 %), 8.14 % (95 % CI: 6.24 %, 10.08 %), 5.67 % (95 % CI: 3.58 %, 7.80 %), and 2.27 % (95 % CI: 0.70 %, 3.87 %) in pediatric AD outpatient visits, respectively. The effects of NO2 remained robust after adjustment for other air pollutants. The exposure-response curves for PM2.5 and PM10 were steeper for moderate-lower concentrations, with a flatten curves at high concentration; nearly linear relationships were found for NO2. Higher associations of NO2 exposure on AD were detected in children under 6 years old (p=0.01); and we observed larger effect of air pollutants in cool seasons (p<0.001 for PM2.5, PM10, NO2 and CO; p=0.043 for SO2). This study indicated that short-term exposure to air pollution could increase risk of outpatient visits for pediatric AD.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Rui Feng
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Libo Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Lanfang Cao
- Department of Pediatrics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yanming Lu
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201112, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200062, China
| | - Min Xia
- Department of Pediatrics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Bo Ding
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201112, China
| | - Liling Qian
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wenhao Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510515, China
| | - Yonghao Gui
- Cardiovascular Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wen He
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Qing Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Aizhen Lu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
2
|
Wu CY, Wu CY, Li MC, Ho HJ, Ao CK. Association of air quality index (AQI) with incidence of atopic dermatitis in Taiwan: A nationwide population-based cohort study. J Am Acad Dermatol 2024:S0190-9622(24)00207-X. [PMID: 38311242 DOI: 10.1016/j.jaad.2024.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Air pollutants may aggravate atopic dermatitis (AD). However, the association between Air Quality Index (AQI) and incidence of AD remains unknown. OBJECTIVE To investigate association between AQI and incidence of AD, using the nationwide cohort in the Taiwan National Health Insurance Research Database (NHIRD). METHODS We included 21,278,938 participants from the NHIRD not diagnosed with AD before 2008. Long-term average AQI value, obtained from the Taiwan Air Quality Monitoring System Network, before AD diagnosis was calculated and linked for each participant. RESULTS 199,205 incident cases of AD were identified from 2008 to 2018. Participants were classified into 4 quantiles (Q) by AQI value. With the lowest quantile, Q1, as reference, the AD risk increased significantly in the Q2 group (adjusted hazard ratio [aHR]: 1.29, 95% confidence interval [CI]: 1.04-1.65), Q3 group (aHR: 4.71, 95% CI: 3.78-6.04), and was highest in the Q4 group (aHR: 13.20, 95% CI: 10.86-16.60). As AQI treated as a continuous variable, an increase of 1 unit of AQI value added 7% of AD risk (aHR, 1.07, 95% CI: 1.07-1.08). LIMITATIONS The NHIRD lacks detailed information on individual subjects. CONCLUSIONS The results demonstrated a significant positive association between AQI and incidence of AD with a clear dose-response relationship.
Collapse
Affiliation(s)
- Chen-Yi Wu
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Dermatology, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Public Health and Department of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chun-Ying Wu
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Public Health, China Medical University, Taichung, Taiwan
| | - Meng-Chieh Li
- Department of Medical Education, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu J Ho
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chon-Kit Ao
- Department of Economics, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Feng C, Shao Y, Ye T, Cai C, Yin C, Li X, Liu H, Ma H, Yu B, Qin M, Chen Y, Yang Y, Xu W, Zhu Q, Jia P, Yang S. Associations between long-term exposure to PM 2.5 chemical constituents and allergic diseases: evidence from a large cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166755. [PMID: 37659545 DOI: 10.1016/j.scitotenv.2023.166755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Exposure to air pollutants may cause immune responses and further allergic diseases, but existing studies have mostly, if not all, focused on effects of short-term exposure to PM2.5 on allergic diseases. OBJECTIVES We estimated associations of long-term exposure to PM2.5 chemical constituents with allergic disease risks and effect modification. METHODS We used the baseline of a newly established, provincially representative cohort of 51,480 participants in southwest China. The presence of allergic rhinitis, allergic asthma, urticaria, and allergic conjunctivitis was self-reported by following a formed questionnaire in face-to-face interviews. The average concentrations of PM2.5 chemical constituents (NO3-, SO42-, NH4+, organic matter [OM], and black carbon [BC]) over participants' residence were estimated using machine learning models. Logistic regression with double robust estimator and weighted quantile sum regression were used to estimate the effects of PM2.5 chemical constituents on allergic disease risks, as well as relative importance of each PM2.5 chemical constituent. RESULTS Per interquartile range increase in the concentration of all PM2.5 chemical constituents was associated with the elevated risks for allergic asthma (OR = 1.79 [1.41-2.26]), allergic conjunctivitis (1.54 [1.19-2.00]), urticaria (1.36 [1.25-1.48]), and allergic rhinitis (1.18 [1.11-1.26]). NO3- contributed more to risks for allergic asthma (weight = 46.05 %), urticaria (72.29 %), and allergic conjunctivitis (47.65 %), while NH4+ contributed more to allergic rhinitis (78.07 %). OM contributed most to the risks for allergic asthma (30.81 %) and allergic conjunctivitis (31.40 %). BC was also associated with allergic rhinitis, urticaria, and allergic conjunctivitis, only with a considerable weight for urticaria (24.59 %). Joint effects of PM2.5 chemical constituents on risks for allergic rhinitis and urticaria were stronger in minorities and farmers than their counterparts. CONCLUSION Long-term exposure to PM2.5 chemical constituents was associated with the increased allergic disease risks, with NO3- and NH4+ accounting for the largest variance of the associations. Our findings would serve as scientific evidence for developing more explicit strategies of air pollution control.
Collapse
Affiliation(s)
- Chuanteng Feng
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ying Shao
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Tingting Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Changwei Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chun Yin
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Xiaobo Li
- Respiratory department, Chengdu Seventh People's Hospital, Chengdu, China
| | - Hongyun Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hua Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mingfang Qin
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Yang Chen
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Yongfang Yang
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Qiuyan Zhu
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, China.
| |
Collapse
|
4
|
Çelebi Sözener Z, Treffeisen ER, Özdel Öztürk B, Schneider LC. Global warming and implications for epithelial barrier disruption and respiratory and dermatologic allergic diseases. J Allergy Clin Immunol 2023; 152:1033-1046. [PMID: 37689250 PMCID: PMC10864040 DOI: 10.1016/j.jaci.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Global warming has direct and indirect effects, as well as short- and long-term impacts on the respiratory and skin barriers. Extreme temperature directly affects the airway epithelial barrier by disrupting the structural proteins and by triggering airway inflammation and hyperreactivity. It enhances tidal volume and respiratory rate by affecting the thermoregulatory system, causing specific airway resistance and reflex bronchoconstriction via activation of bronchopulmonary vagal C fibers and upregulation of transient receptor potential vanilloid (TRPV) 1 and TRPV4. Heat shock proteins are activated under heat stress and contribute to both epithelial barrier dysfunction and airway inflammation. Accordingly, the frequency and severity of allergic rhinitis and asthma have been increasing. Heat activates TRPV3 in keratinocytes, causing the secretion of inflammatory mediators and eventually pruritus. Exposure to air pollutants alters the expression of genes that control skin barrier integrity and triggers an immune response, increasing the incidence and prevalence of atopic dermatitis. There is evidence that extreme temperature, heavy rains and floods, air pollution, and wildfires increase atopic dermatitis flares. In this narrative review, focused on the last 3 years of literature, we explore the effects of global warming on respiratory and skin barrier and their clinical consequences.
Collapse
Affiliation(s)
- Zeynep Çelebi Sözener
- Division of Immunology and Allergic Diseases, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Elsa R Treffeisen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Betül Özdel Öztürk
- Division of Immunology and Allergic Diseases, Bolu Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Lynda C Schneider
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
5
|
Fadadu RP, Abuabara K, Balmes JR, Hanifin JM, Wei ML. Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2526. [PMID: 36767891 PMCID: PMC9916398 DOI: 10.3390/ijerph20032526] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Atopic dermatitis (AD) has increased in prevalence to become the most common inflammatory skin condition globally, and geographic variation and migration studies suggest an important role for environmental triggers. Air pollution, especially due to industrialization and wildfires, may contribute to the development and exacerbation of AD. We provide a comprehensive, multidisciplinary review of existing molecular and epidemiologic studies on the associations of air pollutants and AD symptoms, prevalence, incidence, severity, and clinic visits. Cell and animal studies demonstrated that air pollutants contribute to AD symptoms and disease by activating the aryl hydrocarbon receptor pathway, promoting oxidative stress, initiating a proinflammatory response, and disrupting the skin barrier function. Epidemiologic studies overall report that air pollution is associated with AD among both children and adults, though the results are not consistent among cross-sectional studies. Studies on healthcare use for AD found positive correlations between medical visits for AD and air pollutants. As the air quality worsens in many areas globally, it is important to recognize how this can increase the risk for AD, to be aware of the increased demand for AD-related medical care, and to understand how to counsel patients regarding their skin health. Further research is needed to develop treatments that prevent or mitigate air pollution-related AD symptoms.
Collapse
Affiliation(s)
- Raj P. Fadadu
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - John R. Balmes
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Division of Occupational and Environmental Medicine, University of California, San Francisco, CA 94143, USA
| | - Jon M. Hanifin
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maria L. Wei
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| |
Collapse
|
6
|
Xie A, Chen A, Chen Y, Luo Z, Jiang S, Chen D, Yu R. Lactobacillus for the treatment and prevention of atopic dermatitis: Clinical and experimental evidence. Front Cell Infect Microbiol 2023; 13:1137275. [PMID: 36875529 PMCID: PMC9978199 DOI: 10.3389/fcimb.2023.1137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, accompanied by itching and swelling. The main pathological mechanism of AD is related to the imbalance between Type 2 helper cells (Th2 cells) and Type 1 helper cells (Th1 cells). Currently, no safe and effective means to treat and prevent AD are available; moreover, some treatments have side effects. Probiotics, such as some strains of Lactobacillus, can address these concerns via various pathways: i) facilitating high patient compliance; ii) regulating Th1/Th2 balance, increasing IL-10 secretion, and reducing inflammatory cytokines; iii) accelerating the maturation of the immune system, maintaining intestinal homeostasis, and improving gut microbiota; and iv) improving the symptoms of AD. This review describes the treatment and prevention of AD using 13 species of Lactobacillus. AD is commonly observed in children. Therefore, the review includes a higher proportion of studies on AD in children and fewer in adolescents and adults. However, there are also some strains that do not improve the symptoms of AD and even worsen allergies in children. In addition, a subset of the genus Lactobacillus that can prevent and relieve AD has been identified in vitro. Therefore, future studies should include more in vivo studies and randomized controlled clinical trials. Given the advantages and disadvantages mentioned above, further research in this area is urgently required.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuqing Chen
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| |
Collapse
|