1
|
Erradhouani C, Bortoli S, Aït‐Aïssa S, Coumoul X, Brion F. Metabolic disrupting chemicals in the intestine: the need for biologically relevant models: Zebrafish: what can we learn from this small environment-sensitive fish? FEBS Open Bio 2024; 14:1397-1419. [PMID: 39218795 PMCID: PMC11492336 DOI: 10.1002/2211-5463.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Although the concept of endocrine disruptors first appeared almost 30 years ago, the relatively recent involvement of these substances in the etiology of metabolic pathologies (obesity, diabetes, hepatic steatosis, etc.) has given rise to the concept of Metabolic Disrupting Chemicals (MDCs). Organs such as the liver and adipose tissue have been well studied in the context of metabolic disruption by these substances. The intestine, however, has been relatively unexplored despite its close link with these organs. In vivo models are useful for the study of the effects of MDCs in the intestine and, in addition, allow investigations into interactions with the rest of the organism. In the latter respect, the zebrafish is an animal model which is used increasingly for the characterization of endocrine disruptors and its use as a model for assessing effects on the intestine will, no doubt, expand. This review aims to highlight the importance of the intestine in metabolism and present the zebrafish as a relevant alternative model for investigating the effect of pollutants in the intestine by focusing, in particular, on cytochrome P450 3A (CYP3A), one of the major molecular players in endogenous and MDCs metabolism in the gut.
Collapse
Affiliation(s)
- Chedi Erradhouani
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
- Université Paris CitéFrance
- Inserm UMR‐S 1124ParisFrance
| | | | - Selim Aït‐Aïssa
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| | | | - François Brion
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| |
Collapse
|
2
|
Barole ND, Kirnake V. Investigation of Environmental Factors as a Key Progression in the Treatment of Fatty Liver Disease: A Study Protocol. Cureus 2024; 16:e69144. [PMID: 39398757 PMCID: PMC11467620 DOI: 10.7759/cureus.69144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background Fatty liver disease (FLD) is currently a global health problem associated with environmental and metabolic diseases. In addition to air pollution, chemicals, and dietary choices, metabolic problems can also contribute to the development of FLD. However, in order to understand this situation, environmental conditions need to be investigated comprehensively. Materials and methods This study used a scientific method to assess the environmental factors that play a role in FLD. Individuals from different ethnic backgrounds will be recruited as participants to increase diversity in the sample. The survey will include questions on food, exposure to air pollution, finances, and cultural practices. Statistical analysis will be conducted to further reveal environmental changes and factors that affect FLD, leading to a better understanding of environmental factors that cause FLD in the population. Results The study will significantly identify the environmental factors, such as diet, physical activity, exposure to pollutants, etc., that influence the progression and treatment outcomes of FLD. Conclusion This study will demonstrate that environmental factors influence the occurrence of FLD.
Collapse
Affiliation(s)
- Nisha D Barole
- Clinical Research, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vijendra Kirnake
- Gastroenterology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Luo R, Chen M, Hao S, Hun M, Luo S, Huang F, Lei Z, Zhao M. Associations of exposure to bisphenol-A or parabens with markers of liver injury/function among US adults in NHANES 2011-2016. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00704-8. [PMID: 39020160 DOI: 10.1038/s41370-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Bisphenol-A (BPA) and parabens are common endocrine-disrupting compounds (EDCs) that are used extensively in consumer products worldwide and are widely found in the environment. OBJECTIVE The purpose of this study was to comprehensively explore the correlations between urinary BPA/parabens levels and liver injury/function markers. METHODS In this cross-sectional study, we used National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2016. The exposure variables were urinary BPA and four urinary parabens [methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB), and butylparaben (BPB)], while the outcome variables were indicators of liver function/injury [alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ ALT, albumin (ALB), total protein (TP), total bilirubin (TBIL), alkaline phosphatase (ALP), and the fibrosis-4 index (FIB-4)]. Multiple linear regression and weighted quantile sum (WQS) regression analyses were applied to explore the relationships between the individual/combined exposure variables and the liver injury/function indicators, respectively. Furthermore, stratified analysis was employed to detect the associations influenced by age and sex. RESULTS A total of 2,179 adults were eligible for the present analysis. Multivariate linear regression analysis revealed positive associations of EPB with AST, ALT, TP, and FIB-4 scores and negative associations of BPA with TP and ALB. The effects of urinary parabens on adverse outcomes in the liver (AST and ALT) were significant in the female and middle-aged subgroups. In addition, the WQS analysis revealed that the mixture of four compounds was negatively associated with ALB. BPA had the greatest effect on the serum ALB concentration (weight = 0.688). IMPACT Our present study provided novel evidence of significant associations between BPA or certain parabens and numerous markers of liver injury/function indicators. We found that higher urinary BPA concentrations were associated with worse liver function. Exposure to high EPB/PPB ratios was significantly associated with biomarkers of liver injury.
Collapse
Affiliation(s)
- Rongkun Luo
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingcong Chen
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Hao
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Marady Hun
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaobin Luo
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Mingyi Zhao
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Pan K, Xu J, Xu Y, Wang C, Yu J. The association between endocrine disrupting chemicals and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Pharmacol Res 2024; 205:107251. [PMID: 38862070 DOI: 10.1016/j.phrs.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide. Epidemiological studies have reported that exposure of the population to environmental endocrine-disrupting chemicals (EDCs) is associated with NAFLD. However, EDCs are of different types, and there are inconsistencies in the relevant evidence and descriptions, which have not been systematically summarized so far. Therefore, this study aimed to determine the association between population exposure to EDCs and NAFLD. Three databases, including PubMed, Web of science, and Embase were searched, and 27 articles were included in this study. Methodological quality, heterogeneity, and publication bias of the included studies were assessed using the Newcastle-Ottawa scale, I2 statistics, Begg's test, and Egger's test. The estimated effect sizes of the included studies were pooled and evaluated using the random-effects model (I2 > 50 %) and the fixed-effects model ( I2 < 50 %). The pooled-estimate effect sizes showed that population exposure to Phthalates (PAEs) (OR = 1.18, 95 % CI:1.03-1.34), cadmium (Cd) (OR = 1.37, 95 % CI:1.09-1.72), and bisphenol A (OR = 1.43, 95 % CI:1.24-1.65) were positively correlated with the risk of NAFLD. Exposure to mercury (OR =1.46, 95 % CI:1.17-1.84) and Cd increased the risk of "elevated alanine aminotransferase". On the contrary, no significant association was identified between perfluoroalkyl substances (OR =0.99, 95 % CI:0.93-1.06) and NAFLD. However, female exposure to perfluorooctanoic acid (OR =1.82, 95 % CI:1.01-3.26) led to a higher risk of NAFLD than male exposure. In conclusion, this study revealed that EDCs were risk factors for NAFLD. Nonetheless, the sensitivity analysis results of some of the meta-analyses were not stable and demonstrated high heterogeneity. The evidence for these associations is limited, and more large-scale population-based studies are required to confirm these findings.
Collapse
Affiliation(s)
- Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yuzhu Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Chengxing Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
5
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
LIU H, SUN Z, LIU QS, ZHOU Q, JIANG G. [Synthetic phenolic compounds perturb lipid metabolism and induce obesogenic effects]. Se Pu 2024; 42:131-141. [PMID: 38374593 PMCID: PMC10877482 DOI: 10.3724/sp.j.1123.2023.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 02/21/2024] Open
Abstract
Given continuous development in society and the economy, obesity has become a global epidemic, arousing great concern. In addition to genetic and dietary factors, exposure to environmental chemicals is associated with the occurrence and development of obesity. Current research has indicated that some chemicals with endocrine-disrupting effects can affect lipid metabolism in vivo, causing elevated lipid storage. These chemicals are called "environmental obesogens". Synthetic phenolic compounds (SPCs) are widely used in industrial and daily products, such as plastic products, disinfectants, pesticides, food additives, and so on. The exposure routes of SPCs to the human body may include food and water consumption, direct skin contact, etc. Their unintended exposure could cause harmful effects on human health. As a type of endocrine disruptor, SPCs interfere with adipogenesis and lipid metabolism, exhibiting the characteristics of environmental obesogens. Because SPCs have similar phenolic structures, gathering information on their influences on lipid metabolism would be helpful to understand their structure-related effects. In this review, three commonly used research methods for screening environmental obesogens, including in vitro testing for molecular interactions, cell adipogenic differentiation models, and in vivo studies on lipid metabolism, are summarized, and the advantages and disadvantages of these methods are compared and discussed. Based on both in vitro and in vivo data, three types of SPCs, including bisphenol A (BPA) and its analogues, alkylphenols (APs), and synthetic phenolic antioxidants (SPAs), are systematically discussed in terms of their ability to disrupt adipogenesis and lipid metabolism by focusing on adipose and hepatic tissues, among others. Common findings on the effects of these SPCs on adipocyte differentiation, lipid storage, hepatic lipid accumulation, and liver steatosis are described. The underlying toxicological mechanisms are also discussed from the aspects of nuclear receptor transactivation, inflammation and oxidative stress regulation, intestinal microenvironment alteration, epigenetic modification, and some other signaling pathways. Future research to increase public knowledge on the obesogenic effects of emerging chemicals of concern is encouraged.
Collapse
|
7
|
Mosca A, Manco M, Braghini MR, Cianfarani S, Maggiore G, Alisi A, Vania A. Environment, Endocrine Disruptors, and Fatty Liver Disease Associated with Metabolic Dysfunction (MASLD). Metabolites 2024; 14:71. [PMID: 38276306 PMCID: PMC10819942 DOI: 10.3390/metabo14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Ecological theories suggest that environmental factors significantly influence obesity risk and related syndemic morbidities, including metabolically abnormal obesity associated with nonalcoholic fatty liver disease (MASLD). These factors encompass anthropogenic influences and endocrine-disrupting chemicals (EDCs), synergistically interacting to induce metabolic discrepancies, notably in early life, and disrupt metabolic processes in adulthood. This review focuses on endocrine disruptors affecting a child's MASLD risk, independent of their role as obesogens and thus regardless of their impact on adipogenesis. The liver plays a pivotal role in metabolic and detoxification processes, where various lipophilic endocrine-disrupting molecules accumulate in fatty liver parenchyma, exacerbating inflammation and functioning as new anthropogenics that perpetuate chronic low-grade inflammation, especially insulin resistance, crucial in the pathogenesis of MASLD.
Collapse
Affiliation(s)
- Antonella Mosca
- Hepatology and Liver Transplant Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Melania Manco
- Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Maria Rita Braghini
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.B.); (A.A.)
| | - Stefano Cianfarani
- Endocrinology and Diabetes Unit, Bambino Gesù Pediatric Hospital, 00165 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet, University Hospital, Solnavägen 1, Solna, 171 77 Stockholm, Sweden
| | - Giuseppe Maggiore
- Hepatology and Liver Transplant Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.B.); (A.A.)
| | | |
Collapse
|
8
|
Donato F, Rota M, Ceretti E, Viola GCV, Marullo M, Zani D, Amoresano A, Fontanarosa C, Spinelli M, Lorenzetti S, Montano L. Polychlorinated Biphenyls and Semen Quality in Healthy Young Men Living in a Contaminated Area. TOXICS 2023; 12:6. [PMID: 38276719 PMCID: PMC10820147 DOI: 10.3390/toxics12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and endocrine disruptors that have been implicated in potential damage to human semen. However, the studies conducted so far provide contrasting results. Our study aimed to investigate the associations between PCB serum and semen levels and semen quality in high school and university students living in a highly PCB-polluted area of Italy. Subjects with a normal body mass index who did not make daily use of tobacco, alcohol, drugs, or medication were selected. All participants provided a fasting blood and a semen sample. Gas chromatography-mass spectrometry was used to determine the concentrations of 26 PCB congeners. The concentrations of PCB functional groups and total PCBs were also computed. A total of 143 subjects (median age 20, range 18-22 years) were enrolled. The median total PCB concentrations were 3.85 ng/mL (range 3.43-4.56 ng/mL) and 0.29 ng/mL (range 0.26-0.32 ng/mL) in serum and semen, respectively. The analysis of the associations between sperm PCB concentration and semen parameters showed (a) negative associations between some PCB congeners, functional groups and total PCBs and sperm total motility; (b) negative associations of total PCBs with sperm normal morphology; and (c) no association of PCBs with sperm concentration. Subjects at the highest quartile of semen total PCB concentration had 19% and 23% mean reductions in total motility and normal morphology, respectively, compared to those at the lowest quartile. The analysis of the associations of serum PCB levels with sperm parameters yielded null or mixed (some positive, other negative) results. In conclusion, the present study provides evidence of a negative effect of some PCB congeners and total PCBs in semen on sperm motility and normal morphology. However, the associations between the concentration of serum and semen PCB congeners and functional groups and sperm quality parameters were inconsistent.
Collapse
Affiliation(s)
- Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Matteo Rota
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Elisabetta Ceretti
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Gaia Claudia Viviana Viola
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Monica Marullo
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Danilo Zani
- Unit of Urology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (C.F.); (M.S.)
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (C.F.); (M.S.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (C.F.); (M.S.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy;
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), “Oliveto Citra Hospital”, 84020 Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|