1
|
Lim SY, Klein C. Parkinson's Disease is Predominantly a Genetic Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:467-482. [PMID: 38552119 DOI: 10.3233/jpd-230376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997 indisputably confirmed a genetic cause in a subset of Parkinson's disease (PD) patients. Currently, pathogenic variants in one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology. Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases, characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and epigenetic factors leads to disease development.
Collapse
Affiliation(s)
- Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, Division of Neurology, University of Malaya, Kuala Lumpur, Malaysia
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
2
|
Basu S, Song M, Adams L, Jeong I, Je G, Guhathakurta S, Jiang J, Boparai N, Dai W, Cardozo-Pelaez F, Tatulian SA, Han KY, Elliott J, Baum J, McLean PJ, Dickson DW, Kim YS. Transcriptional mutagenesis of α-synuclein caused by DNA oxidation in Parkinson's disease pathogenesis. Acta Neuropathol 2023; 146:685-705. [PMID: 37740734 PMCID: PMC10564827 DOI: 10.1007/s00401-023-02632-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.
Collapse
Affiliation(s)
- Sambuddha Basu
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Minkyung Song
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Levi Adams
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Inhye Jeong
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Goun Je
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Subhrangshu Guhathakurta
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Jennifer Jiang
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Nikpreet Boparai
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Wei Dai
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Fernando Cardozo-Pelaez
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
- Center for Structural and Functional Neurosciences, University of Montana, Missoula, MT, 59812, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Yoon-Seong Kim
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
3
|
Won SY, Kim YC, Jeong BH. Elevated E200K Somatic Mutation of the Prion Protein Gene ( PRNP) in the Brain Tissues of Patients with Sporadic Creutzfeldt-Jakob Disease (CJD). Int J Mol Sci 2023; 24:14831. [PMID: 37834279 PMCID: PMC10573534 DOI: 10.3390/ijms241914831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (CJD) is a major human prion disease worldwide. CJD is a fatal neurodegenerative disease caused by an abnormal prion protein (PrPSc). To date, the exact etiology of sporadic CJD has not been fully elucidated. We investigated the E200K and V203I somatic mutations of the prion protein gene (PRNP) in sporadic CJD patients and matched healthy controls using pyrosequencing. In addition, we estimated the impact of somatic mutations on the human prion protein (PrP) using PolyPhen-2, PANTHER and PROVEAN. Furthermore, we evaluated the 3D structure and electrostatic potential of the human PrP according to somatic mutations using DeepView. The rates of PRNP K200 somatic mutation were significantly increased in the frontal cortex and hippocampus of sporadic CJD patients compared to the matched controls. In addition, the electrostatic potential of the human PrP was significantly changed by the K200 somatic mutation of the PRNP gene. To the best of our knowledge, this is the first report on an association of the PRNP K200 somatic mutation with sporadic CJD.
Collapse
Affiliation(s)
- Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea;
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea;
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
5
|
Vijg J, Schumacher B, Abakir A, Antonov M, Bradley C, Cagan A, Church G, Gladyshev VN, Gorbunova V, Maslov AY, Reik W, Sharifi S, Suh Y, Walsh K. Mitigating age-related somatic mutation burden. Trends Mol Med 2023; 29:530-540. [PMID: 37121869 DOI: 10.1016/j.molmed.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023]
Abstract
Genomes are inherently unstable and require constant DNA repair to maintain their genetic information. However, selective pressure has optimized repair mechanisms in somatic cells only to allow transmitting genetic information to the next generation, not to maximize sequence integrity long beyond the reproductive age. Recent studies have confirmed that somatic mutations, due to errors during genome repair and replication, accumulate in tissues and organs of humans and model organisms. Here, we describe recent advances in the quantitative analysis of somatic mutations in vivo. We also review evidence for or against a possible causal role of somatic mutations in aging. Finally, we discuss options to prevent, delay or eliminate de novo, random somatic mutations as a cause of aging.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Center for Single-Cell Omics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, University and University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Abdulkadir Abakir
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
| | | | | | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wolf Reik
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK; Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Pamphlett R, Bishop DP. The toxic metal hypothesis for neurological disorders. Front Neurol 2023; 14:1173779. [PMID: 37426441 PMCID: PMC10328356 DOI: 10.3389/fneur.2023.1173779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Multiple sclerosis and the major sporadic neurogenerative disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer disease are considered to have both genetic and environmental components. Advances have been made in finding genetic predispositions to these disorders, but it has been difficult to pin down environmental agents that trigger them. Environmental toxic metals have been implicated in neurological disorders, since human exposure to toxic metals is common from anthropogenic and natural sources, and toxic metals have damaging properties that are suspected to underlie many of these disorders. Questions remain, however, as to how toxic metals enter the nervous system, if one or combinations of metals are sufficient to precipitate disease, and how toxic metal exposure results in different patterns of neuronal and white matter loss. The hypothesis presented here is that damage to selective locus ceruleus neurons from toxic metals causes dysfunction of the blood-brain barrier. This allows circulating toxicants to enter astrocytes, from where they are transferred to, and damage, oligodendrocytes, and neurons. The type of neurological disorder that arises depends on (i) which locus ceruleus neurons are damaged, (ii) genetic variants that give rise to susceptibility to toxic metal uptake, cytotoxicity, or clearance, (iii) the age, frequency, and duration of toxicant exposure, and (iv) the uptake of various mixtures of toxic metals. Evidence supporting this hypothesis is presented, concentrating on studies that have examined the distribution of toxic metals in the human nervous system. Clinicopathological features shared between neurological disorders are listed that can be linked to toxic metals. Details are provided on how the hypothesis applies to multiple sclerosis and the major neurodegenerative disorders. Further avenues to explore the toxic metal hypothesis for neurological disorders are suggested. In conclusion, environmental toxic metals may play a part in several common neurological disorders. While further evidence to support this hypothesis is needed, to protect the nervous system it would be prudent to take steps to reduce environmental toxic metal pollution from industrial, mining, and manufacturing sources, and from the burning of fossil fuels.
Collapse
Affiliation(s)
- Roger Pamphlett
- Department of Pathology, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Solís-Moruno M, Batlle-Masó L, Bonet N, Aróstegui JI, Casals F. Somatic genetic variation in healthy tissue and non-cancer diseases. Eur J Hum Genet 2023; 31:48-54. [PMID: 36289407 PMCID: PMC9823099 DOI: 10.1038/s41431-022-01213-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 02/08/2023] Open
Abstract
Somatic genetic variants have been studied for several years mostly concerning cancer, where they contribute to its origin and development. It is also clear that the somatic variants load is greater in aged individuals in comparison to younger ones, pointing to a cause/consequence of the senescence process. More recently, researchers have focused on the role of this type of variation in healthy tissue and its dynamics in cell lineages and different organs. In addition, somatic variants have been described to contribute to monogenic diseases, and the number of evidences of their role in complex disorders is also increasing. Thanks to recent advances in next-generation sequencing technologies, this type of genetic variation can be now more easily studied than in the past, although we still face some important limitations. Novel strategies for sampling, sequencing and filtering are being investigated to detect these variants, although validating them with an orthogonal approach will most likely still be needed. In this review, we aim to update our knowledge of somatic variation detection and its relation to healthy tissue and non-cancer diseases.
Collapse
Affiliation(s)
- Manuel Solís-Moruno
- grid.5612.00000 0001 2172 2676Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Department of Immunology, Hospital Clínic, Barcelona, Spain ,grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Batlle-Masó
- grid.7080.f0000 0001 2296 0625Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Bonet
- grid.5612.00000 0001 2172 2676Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
| | - Juan I. Aróstegui
- grid.410458.c0000 0000 9635 9413Department of Immunology, Hospital Clínic, Barcelona, Spain ,grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.5841.80000 0004 1937 0247Universitat de Barcelona, Barcelona, Spain
| | - Ferran Casals
- grid.5612.00000 0001 2172 2676Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|