1
|
Rikhari H, Baidya Kayal E, Ganguly S, Sasi A, Sharma S, Antony A, Rangarajan K, Bakhshi S, Kandasamy D, Mehndiratta A. Improving lung nodule segmentation in thoracic CT scans through the ensemble of 3D U-Net models. Int J Comput Assist Radiol Surg 2024; 19:2089-2099. [PMID: 39044036 DOI: 10.1007/s11548-024-03222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE The current study explores the application of 3D U-Net architectures combined with Inception and ResNet modules for precise lung nodule detection through deep learning-based segmentation technique. This investigation is motivated by the objective of developing a Computer-Aided Diagnosis (CAD) system for effective diagnosis and prognostication of lung nodules in clinical settings. METHODS The proposed method trained four different 3D U-Net models on the retrospective dataset obtained from AIIMS Delhi. To augment the training dataset, affine transformations and intensity transforms were utilized. Preprocessing steps included CT scan voxel resampling, intensity normalization, and lung parenchyma segmentation. Model optimization utilized a hybrid loss function that combined Dice Loss and Focal Loss. The model performance of all four 3D U-Nets was evaluated patient-wise using dice coefficient and Jaccard coefficient, then averaged to obtain the average volumetric dice coefficient (DSCavg) and average Jaccard coefficient (IoUavg) on a test dataset comprising 53 CT scans. Additionally, an ensemble approach (Model-V) was utilized featuring 3D U-Net (Model-I), ResNet (Model-II), and Inception (Model-III) 3D U-Net architectures, combined with two distinct patch sizes for further investigation. RESULTS The ensemble of models obtained the highest DSCavg of 0.84 ± 0.05 and IoUavg of 0.74 ± 0.06 on the test dataset, compared against individual models. It mitigated false positives, overestimations, and underestimations observed in individual U-Net models. Moreover, the ensemble of models reduced average false positives per scan in the test dataset (1.57 nodules/scan) compared to individual models (2.69-3.39 nodules/scan). CONCLUSIONS The suggested ensemble approach presents a strong and effective strategy for automatically detecting and delineating lung nodules, potentially aiding CAD systems in clinical settings. This approach could assist radiologists in laborious and meticulous lung nodule detection tasks in CT scans, improving lung cancer diagnosis and treatment planning.
Collapse
Affiliation(s)
- Himanshu Rikhari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Esha Baidya Kayal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shuvadeep Ganguly
- Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences New Delhi, New Delhi, India
| | - Archana Sasi
- Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences New Delhi, New Delhi, India
| | - Swetambri Sharma
- Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences New Delhi, New Delhi, India
| | - Ajith Antony
- All India Institute of Medical Sciences New Delhi, New Delhi, India
| | - Krithika Rangarajan
- Dr. B.R.A. IRCH, All India Institute of Medical Sciences New Delhi, New Delhi, India
| | - Sameer Bakhshi
- Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences New Delhi, New Delhi, India
| | | | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Department of Biomedical Engineering, All India Institute of Medical Sciences New Delhi, New Delhi, India.
| |
Collapse
|
2
|
Luo W, Ren Y, Liu Y, Deng J, Huang X. Imaging diagnostics of pulmonary ground-glass nodules: a narrative review with current status and future directions. Quant Imaging Med Surg 2024; 14:6123-6146. [PMID: 39144060 PMCID: PMC11320543 DOI: 10.21037/qims-24-674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Background and Objective The incidence rate of lung cancer, which also has the highest mortality rates for both men and women worldwide, is increasing globally. Due to advancements in imaging technology and the growing inclination of individuals to undergo screening, the detection rate of ground-glass nodules (GGNs) has surged rapidly. Currently, artificial intelligence (AI) methods for data analysis and interpretation, image processing, illness diagnosis, and lesion prediction offer a novel perspective on the diagnosis of GGNs. This article aimed to examine how to detect malignant lesions as early as possible and improve clinical diagnostic and treatment decisions by identifying benign and malignant lesions using imaging data. It also aimed to describe the use of computed tomography (CT)-guided biopsies and highlight developments in AI techniques in this area. Methods We used PubMed, Elsevier ScienceDirect, Springer Database, and Google Scholar to search for information relevant to the article's topic. We gathered, examined, and interpreted relevant imaging resources from the Second Affiliated Hospital of Nanchang University's Imaging Center. Additionally, we used Adobe Illustrator 2020 to process all the figures. Key Content and Findings We examined the common signs of GGNs, elucidated the relationship between these signs and the identification of benign and malignant lesions, and then described the application of AI in image segmentation, automatic classification, and the invasiveness prediction of GGNs over the last three years, including its limitations and outlook. We also discussed the necessity of conducting biopsies of persistent pure GGNs. Conclusions A variety of imaging features can be combined to improve the diagnosis of benign and malignant GGNs. The use of CT-guided puncture biopsy to clarify the nature of lesions should be considered with caution. The development of new AI tools brings new possibilities and hope to improving the ability of imaging physicians to analyze GGN images and achieving accurate diagnosis.
Collapse
Affiliation(s)
- Wenting Luo
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Yifei Ren
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Yinuo Liu
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Jun Deng
- The Second Clinical Medical College, Nanchang University, Nanchang, China
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Xiaoning Huang
- The Second Clinical Medical College, Nanchang University, Nanchang, China
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| |
Collapse
|
3
|
Hatta S, Ichiuji Y, Mabu S, Kugler M, Hontani H, Okoshi T, Fuse H, Kawada T, Kido S, Imamura Y, Naiki H, Inai K. Improved artificial intelligence discrimination of minor histological populations by supplementing with color-adjusted images. Sci Rep 2023; 13:19068. [PMID: 37925580 PMCID: PMC10625567 DOI: 10.1038/s41598-023-46472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Despite the dedicated research of artificial intelligence (AI) for pathological images, the construction of AI applicable to histopathological tissue subtypes, is limited by insufficient dataset collection owing to disease infrequency. Here, we present a solution involving the addition of supplemental tissue array (TA) images that are adjusted to the tonality of the main data using a cycle-consistent generative adversarial network (CycleGAN) to the training data for rare tissue types. F1 scores of rare tissue types that constitute < 1.2% of the training data were significantly increased by improving recall values after adding color-adjusted TA images constituting < 0.65% of total training patches. The detector also enabled the equivalent discrimination of clinical images from two distinct hospitals and the capability was more increased following color-correction of test data before AI identification (F1 score from 45.2 ± 27.1 to 77.1 ± 10.3, p < 0.01). These methods also classified intraoperative frozen sections, while excessive supplementation paradoxically decreased F1 scores. These results identify strategies for building an AI that preserves the imbalance between training data with large differences in actual disease frequencies, which is important for constructing AI for practical histopathological classification.
Collapse
Affiliation(s)
- Satomi Hatta
- Division of Molecular Pathology, Department of Pathological Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
- Division of Diagnostic/Surgical Pathology, University of Fukui Hospital, Eiheiji, Japan
| | - Yoshihito Ichiuji
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Shingo Mabu
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Mauricio Kugler
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Hidekata Hontani
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Tadakazu Okoshi
- Department of Pathology, Fukui Red Cross Hospital, Fukui, Japan
| | - Haruki Fuse
- Department of Clinical Inspection, Maizuru Kyosai Hospital, Maizuru, Japan
| | - Takako Kawada
- Department of Clinical Inspection, Maizuru Kyosai Hospital, Maizuru, Japan
| | - Shoji Kido
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiaki Imamura
- Division of Diagnostic/Surgical Pathology, University of Fukui Hospital, Eiheiji, Japan
| | - Hironobu Naiki
- Division of Molecular Pathology, Department of Pathological Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Kunihiro Inai
- Division of Molecular Pathology, Department of Pathological Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan.
| |
Collapse
|
4
|
Jenkin Suji R, Bhadauria SS, Wilfred Godfrey W. A survey and taxonomy of 2.5D approaches for lung segmentation and nodule detection in CT images. Comput Biol Med 2023; 165:107437. [PMID: 37717526 DOI: 10.1016/j.compbiomed.2023.107437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
CAD systems for lung cancer diagnosis and detection can significantly offer unbiased, infatiguable diagnostics with minimal variance, decreasing the mortality rate and the five-year survival rate. Lung segmentation and lung nodule detection are critical steps in the lung cancer CAD system pipeline. Literature on lung segmentation and lung nodule detection mostly comprises techniques that process 3-D volumes or 2-D slices and surveys. However, surveys that highlight 2.5D techniques for lung segmentation and lung nodule detection still need to be included. This paper presents a background and discussion on 2.5D methods to fill this gap. Further, this paper also gives a taxonomy of 2.5D approaches and a detailed description of the 2.5D approaches. Based on the taxonomy, various 2.5D techniques for lung segmentation and lung nodule detection are clustered into these 2.5D approaches, which is followed by possible future work in this direction.
Collapse
|
5
|
Guedes Pinto E, Penha D, Ravara S, Monaghan C, Hochhegger B, Marchiori E, Taborda-Barata L, Irion K. Factors influencing the outcome of volumetry tools for pulmonary nodule analysis: a systematic review and attempted meta-analysis. Insights Imaging 2023; 14:152. [PMID: 37741928 PMCID: PMC10517915 DOI: 10.1186/s13244-023-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 09/25/2023] Open
Abstract
Health systems worldwide are implementing lung cancer screening programmes to identify early-stage lung cancer and maximise patient survival. Volumetry is recommended for follow-up of pulmonary nodules and outperforms other measurement methods. However, volumetry is known to be influenced by multiple factors. The objectives of this systematic review (PROSPERO CRD42022370233) are to summarise the current knowledge regarding factors that influence volumetry tools used in the analysis of pulmonary nodules, assess for significant clinical impact, identify gaps in current knowledge and suggest future research. Five databases (Medline, Scopus, Journals@Ovid, Embase and Emcare) were searched on the 21st of September, 2022, and 137 original research studies were included, explicitly testing the potential impact of influencing factors on the outcome of volumetry tools. The summary of these studies is tabulated, and a narrative review is provided. A subset of studies (n = 16) reporting clinical significance were selected, and their results were combined, if appropriate, using meta-analysis. Factors with clinical significance include the segmentation algorithm, quality of the segmentation, slice thickness, the level of inspiration for solid nodules, and the reconstruction algorithm and kernel in subsolid nodules. Although there is a large body of evidence in this field, it is unclear how to apply the results from these studies in clinical practice as most studies do not test for clinical relevance. The meta-analysis did not improve our understanding due to the small number and heterogeneity of studies testing for clinical significance. CRITICAL RELEVANCE STATEMENT: Many studies have investigated the influencing factors of pulmonary nodule volumetry, but only 11% of these questioned their clinical relevance in their management. The heterogeneity among these studies presents a challenge in consolidating results and clinical application of the evidence. KEY POINTS: • Factors influencing the volumetry of pulmonary nodules have been extensively investigated. • Just 11% of studies test clinical significance (wrongly diagnosing growth). • Nodule size interacts with most other influencing factors (especially for smaller nodules). • Heterogeneity among studies makes comparison and consolidation of results challenging. • Future research should focus on clinical applicability, screening, and updated technology.
Collapse
Affiliation(s)
- Erique Guedes Pinto
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal.
| | - Diana Penha
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | - Sofia Ravara
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Colin Monaghan
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | | | - Edson Marchiori
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Bloco K - Av. Carlos Chagas Filho, 373 - 2º Andar, Sala 49 - Cidade Universitária da Universidade Federal Do Rio de Janeiro, Rio de Janeiro - RJ, 21044-020, Brasil
- Faculdade de Medicina, Universidade Federal Fluminense, Av. Marquês Do Paraná, 303 - Centro, Niterói - RJ, 24220-000, Brasil
| | - Luís Taborda-Barata
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Klaus Irion
- Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| |
Collapse
|
6
|
Vijayan R, Sheth N, Mekki L, Lu A, Uneri A, Sisniega A, Magaraggia J, Kleinszig G, Vogt S, Thiboutot J, Lee H, Yarmus L, Siewerdsen JH. 3D-2D image registration in the presence of soft-tissue deformation in image-guided transbronchial interventions. Phys Med Biol 2022; 68. [PMID: 36317269 DOI: 10.1088/1361-6560/ac9e3c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Purpose. Target localization in pulmonary interventions (e.g. transbronchial biopsy of a lung nodule) is challenged by deformable motion and may benefit from fluoroscopic overlay of the target to provide accurate guidance. We present and evaluate a 3D-2D image registration method for fluoroscopic overlay in the presence of tissue deformation using a multi-resolution/multi-scale (MRMS) framework with an objective function that drives registration primarily by soft-tissue image gradients.Methods. The MRMS method registers 3D cone-beam CT to 2D fluoroscopy without gating of respiratory phase by coarse-to-fine resampling and global-to-local rescaling about target regions-of-interest. A variation of the gradient orientation (GO) similarity metric (denotedGO') was developed to downweight bone gradients and drive registration via soft-tissue gradients. Performance was evaluated in terms of projection distance error at isocenter (PDEiso). Phantom studies determined nominal algorithm parameters and capture range. Preclinical studies used a freshly deceased, ventilated porcine specimen to evaluate performance in the presence of real tissue deformation and a broad range of 3D-2D image mismatch.Results. Nominal algorithm parameters were identified that provided robust performance over a broad range of motion (0-20 mm), including an adaptive parameter selection technique to accommodate unknown mismatch in respiratory phase. TheGO'metric yielded median PDEiso= 1.2 mm, compared to 6.2 mm for conventionalGO.Preclinical studies with real lung deformation demonstrated median PDEiso= 1.3 mm with MRMS +GO'registration, compared to 2.2 mm with a conventional transform. Runtime was 26 s and can be reduced to 2.5 s given a prior registration within ∼5 mm as initialization.Conclusions. MRMS registration via soft-tissue gradients achieved accurate fluoroscopic overlay in the presence of deformable lung motion. By driving registration via soft-tissue image gradients, the method avoided false local minima presented by bones and was robust to a wide range of motion magnitude.
Collapse
Affiliation(s)
- R Vijayan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - N Sheth
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - L Mekki
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | | - S Vogt
- Siemens Healthineers, Erlangen, Germany
| | - J Thiboutot
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - H Lee
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - L Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
7
|
Lung Cancer Nodules Detection via an Adaptive Boosting Algorithm Based on Self-Normalized Multiview Convolutional Neural Network. JOURNAL OF ONCOLOGY 2022; 2022:5682451. [PMID: 36199795 PMCID: PMC9529389 DOI: 10.1155/2022/5682451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Lung cancer is the deadliest cancer killing almost 1.8 million people in 2020. The new cases are expanding alarmingly. Early lung cancer manifests itself in the form of nodules in the lungs. One of the most widely used techniques for both lung cancer early and noninvasive diagnosis is computed tomography (CT). However, the intensive workload of radiologists to read a large number of scans for nodules detection gives rise to issues like false detection and missed detection. To overcome these issues, we proposed an innovative strategy titled adaptive boosting self-normalized multiview convolution neural network (AdaBoost-SNMV-CNN) for lung cancer nodules detection across CT scans. In AdaBoost-SNMV-CNN, MV-CNN function as a baseline learner while the scaled exponential linear unit (SELU) activation function normalizes the layers by considering their neighbors' information and a special drop-out technique (α-dropout). The proposed method was trained and tested using the widely Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and Early Lung Cancer Action Program (ELCAP) datasets. AdaBoost-SNMV-CNN achieved an accuracy of 92%, sensitivity of 93%, and specificity of 92% for lung nodules detection on the LIDC-IDRI dataset. Meanwhile, on the ELCAP dataset, the accuracy for detecting lung nodules was 99%, sensitivity 100%, and specificity 98%. AdaBoost-SNMV-CNN outperformed the majority of the model in accuracy, sensitivity, and specificity. The multiviews confer the model's good generalization and learning ability for diverse features of lung nodules, the model architecture is simple, and has a minimal computational time of around 102 minutes. We believe that AdaBoost-SNMV-CNN has good accuracy for the detection of lung nodules and anticipate its potential application in the noninvasive clinical diagnosis of lung cancer. This model can be of good assistance to the radiologist and will be of interest to researchers involved in the designing and development of advanced systems for the detection of lung nodules to accomplish the goal of noninvasive diagnosis of lung cancer.
Collapse
|
8
|
Intelligent tuberculosis activity assessment system based on an ensemble of neural networks. Comput Biol Med 2022; 147:105800. [PMID: 35809407 DOI: 10.1016/j.compbiomed.2022.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022]
Abstract
This article proposes a novel approach to assess the degree of activity of pulmonary tuberculosis by active tuberculoma foci. It includes the development of a new method for processing lung CT images using an ensemble of deep convolutional neural networks using such special algorithms: an optimized algorithm for preliminary segmentation and selection of informative scans, a new algorithm for refining segmented masks to improve the final accuracy, an efficient fuzzy inference system for more weighted activity assessment. The approach also includes the use of medical classification of disease activity based on densitometric measures of tuberculomas. The selection and markup of the training sample images were performed manually by qualified pulmonologists from a base of approximately 9,000 CT lung scans of patients who had been enrolled in the dispensary for 15 years. The first basic step of the proposed approach is the developed algorithm for preprocessing CT lung scans. It consists in segmentation of intrapulmonary regions, which contain vessels, bronchi, lung walls to detect complex cases of ingrown tuberculomas. To minimize computational cost, the proposed approach includes a new method for selecting informative lung scans, i.e., those that potentially contain tuberculomas. The main processing step is binary segmentation of tuberculomas, which is proposed to be performed optimally by a certain ensemble of neural networks. Optimization of the ensemble size and its composition is achieved by using an algorithm for calculating individual contributions. A modification of this algorithm using new effective heuristic metrics has been proposed which improves the performance of the algorithm for this problem. A special algorithm was developed for post-processing of tuberculoma masks obtained during the segmentation step. The goal of this step is to refine the calculated mask for the physical placement of the tuberculoma. The algorithm consists in cleaning the mask from noisy formations on the scan, as well as expanding the mask area to maximize the capture of the tuberculoma location area. A simplified fuzzy inference system was developed to provide a more accurate final calculation of the degree of disease activity, which reflects data from current medical studies. The accuracy of the system was also tested on a test sample of independent patients, showing more than 96% correct calculations of disease activity, confirming the effectiveness and feasibility of introducing the system into clinical practice.
Collapse
|