1
|
Ye C, Zhang Y, Ran C, Ma T. Recent Progress in Brain Network Models for Medical Applications: A Review. HEALTH DATA SCIENCE 2024; 4:0157. [PMID: 38979037 PMCID: PMC11227951 DOI: 10.34133/hds.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Importance: Pathological perturbations of the brain often spread via connectome to fundamentally alter functional consequences. By integrating multimodal neuroimaging data with mathematical neural mass modeling, brain network models (BNMs) enable to quantitatively characterize aberrant network dynamics underlying multiple neurological and psychiatric disorders. We delved into the advancements of BNM-based medical applications, discussed the prevalent challenges within this field, and provided possible solutions and future directions. Highlights: This paper reviewed the theoretical foundations and current medical applications of computational BNMs. Composed of neural mass models, the BNM framework allows to investigate large-scale brain dynamics behind brain diseases by linking the simulated functional signals to the empirical neurophysiological data, and has shown promise in exploring neuropathological mechanisms, elucidating therapeutic effects, and predicting disease outcome. Despite that several limitations existed, one promising trend of this research field is to precisely guide clinical neuromodulation treatment based on individual BNM simulation. Conclusion: BNM carries the potential to help understand the mechanism underlying how neuropathology affects brain network dynamics, further contributing to decision-making in clinical diagnosis and treatment. Several constraints must be addressed and surmounted to pave the way for its utilization in the clinic.
Collapse
Affiliation(s)
- Chenfei Ye
- International Research Institute for Artificial Intelligence,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Yixuan Zhang
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Chen Ran
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Ting Ma
- International Research Institute for Artificial Intelligence,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology,
Harbin Institute of Technology at Shenzhen, China
| |
Collapse
|
2
|
Bonagiri A, Biswas D, Chakravarthy S. Coupled Memristor Oscillators for Neuromorphic Locomotion Control: Modeling and Analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8638-8652. [PMID: 37018567 DOI: 10.1109/tnnls.2022.3231298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The recent surge of interest in brain-inspired architectures along with the development of nonlinear dynamical electronic devices and circuits has enabled energy-efficient hardware realizations of several important neurobiological systems and features. Central pattern generator (CPG) is one such neural system underlying the control of various rhythmic motor behaviors in animals. A CPG can produce spontaneous coordinated rhythmic output signals without any feedback mechanism, ideally realizable by a system of coupled oscillators. Bio-inspired robotics aims to use this approach to control the limb movement for synchronized locomotion. Hence, devising a compact and energy-efficient hardware platform to implement neuromorphic CPGs would be of great benefit for bio-inspired robotics. In this work, we demonstrate that four capacitively coupled vanadium dioxide (VO2) memristor-based oscillators can produce spatiotemporal patterns corresponding to the primary quadruped gaits. The phase relationships underlying the gait patterns are governed by four tunable bias voltages (or four coupling strengths) making the network programmable, reducing the complex problem of gait selection and dynamic interleg coordination to the choice of four control parameters. To this end, we first introduce a dynamical model for the VO2 memristive nanodevice, then perform analytical and bifurcation analysis of a single oscillator, and finally demonstrate the dynamics of coupled oscillators through extensive numerical simulations. We also show that adopting the presented model for a VO2 memristor reveals a striking resemblance between VO2 memristor oscillators and conductance-based biological neuron models such as the Morris-Lecar (ML) model. This can inspire and guide further research on implementation of neuromorphic memristor circuits that emulate neurobiological phenomena.
Collapse
|
3
|
Maslennikov O, Perc M, Nekorkin V. Topological features of spike trains in recurrent spiking neural networks that are trained to generate spatiotemporal patterns. Front Comput Neurosci 2024; 18:1363514. [PMID: 38463243 PMCID: PMC10920356 DOI: 10.3389/fncom.2024.1363514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we focus on training recurrent spiking neural networks to generate spatiotemporal patterns in the form of closed two-dimensional trajectories. Spike trains in the trained networks are examined in terms of their dissimilarity using the Victor-Purpura distance. We apply algebraic topology methods to the matrices obtained by rank-ordering the entries of the distance matrices, specifically calculating the persistence barcodes and Betti curves. By comparing the features of different types of output patterns, we uncover the complex relations between low-dimensional target signals and the underlying multidimensional spike trains.
Collapse
Affiliation(s)
- Oleg Maslennikov
- Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- Complexity Science Hub Vienna, Vienna, Austria
- Department of Physics, Kyung Hee University, Seoul, Republic of Korea
| | - Vladimir Nekorkin
- Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Sievers B, Thornton MA. Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain. Soc Cogn Affect Neurosci 2024; 19:nsae014. [PMID: 38334747 PMCID: PMC10880882 DOI: 10.1093/scan/nsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
This review offers an accessible primer to social neuroscientists interested in neural networks. It begins by providing an overview of key concepts in deep learning. It then discusses three ways neural networks can be useful to social neuroscientists: (i) building statistical models to predict behavior from brain activity; (ii) quantifying naturalistic stimuli and social interactions; and (iii) generating cognitive models of social brain function. These applications have the potential to enhance the clinical value of neuroimaging and improve the generalizability of social neuroscience research. We also discuss the significant practical challenges, theoretical limitations and ethical issues faced by deep learning. If the field can successfully navigate these hazards, we believe that artificial neural networks may prove indispensable for the next stage of the field's development: deep social neuroscience.
Collapse
Affiliation(s)
- Beau Sievers
- Department of Psychology, Stanford University, 420 Jane Stanford Way, Stanford, CA 94305, USA
- Department of Psychology, Harvard University, 33 Kirkland St., Cambridge, MA 02138, USA
| | - Mark A Thornton
- Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Wang C, Zhang T, Chen X, He S, Li S, Wu S. BrainPy, a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics programming. eLife 2023; 12:e86365. [PMID: 38132087 PMCID: PMC10796146 DOI: 10.7554/elife.86365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Elucidating the intricate neural mechanisms underlying brain functions requires integrative brain dynamics modeling. To facilitate this process, it is crucial to develop a general-purpose programming framework that allows users to freely define neural models across multiple scales, efficiently simulate, train, and analyze model dynamics, and conveniently incorporate new modeling approaches. In response to this need, we present BrainPy. BrainPy leverages the advanced just-in-time (JIT) compilation capabilities of JAX and XLA to provide a powerful infrastructure tailored for brain dynamics programming. It offers an integrated platform for building, simulating, training, and analyzing brain dynamics models. Models defined in BrainPy can be JIT compiled into binary instructions for various devices, including Central Processing Unit, Graphics Processing Unit, and Tensor Processing Unit, which ensures high-running performance comparable to native C or CUDA. Additionally, BrainPy features an extensible architecture that allows for easy expansion of new infrastructure, utilities, and machine-learning approaches. This flexibility enables researchers to incorporate cutting-edge techniques and adapt the framework to their specific needs.
Collapse
Affiliation(s)
- Chaoming Wang
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- Guangdong Institute of Intelligence Science and TechnologyGuangdongChina
| | - Tianqiu Zhang
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
| | - Xiaoyu Chen
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
| | - Sichao He
- Beijing Jiaotong UniversityBeijingChina
| | - Shangyang Li
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
| | - Si Wu
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- Guangdong Institute of Intelligence Science and TechnologyGuangdongChina
| |
Collapse
|
6
|
Maslennikov OV, Gao C, Nekorkin VI. Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns. CHAOS (WOODBURY, N.Y.) 2023; 33:093125. [PMID: 37722673 DOI: 10.1063/5.0166359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic features resulting in generating spatiotemporal patterns including multicluster and chimera states. We show the effect of individual neural trajectories as well as whole-network activity distributions on exhibiting particular regimes. In addition, we address the question how trained output weights contribute to the autonomous multidimensional dynamics.
Collapse
Affiliation(s)
- Oleg V Maslennikov
- Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Chao Gao
- School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xian, China
| | - Vladimir I Nekorkin
- Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Mysin I. Phase relations of interneuronal activity relative to theta rhythm. Front Neural Circuits 2023; 17:1198573. [PMID: 37484208 PMCID: PMC10358363 DOI: 10.3389/fncir.2023.1198573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The theta rhythm plays a crucial role in synchronizing neural activity during attention and memory processes. However, the mechanisms behind the formation of neural activity during theta rhythm generation remain unknown. To address this, we propose a mathematical model that explains the distribution of interneurons in the CA1 field during the theta rhythm phase. Our model consists of a network of seven types of interneurons in the CA1 field that receive inputs from the CA3 field, entorhinal cortex, and local pyramidal neurons in the CA1 field. By adjusting the parameters of the connections in the model. We demonstrate that it is possible to replicate the experimentally observed phase relations between interneurons and the theta rhythm. Our model predicts that populations of interneurons receive unimodal excitation and inhibition with coinciding peaks, and that excitation dominates to determine the firing dynamics of interneurons.
Collapse
|
8
|
Pugavko MM, Maslennikov OV, Nekorkin VI. Multitask computation through dynamics in recurrent spiking neural networks. Sci Rep 2023; 13:3997. [PMID: 36899052 PMCID: PMC10006454 DOI: 10.1038/s41598-023-31110-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In this work, inspired by cognitive neuroscience experiments, we propose recurrent spiking neural networks trained to perform multiple target tasks. These models are designed by considering neurocognitive activity as computational processes through dynamics. Trained by input-output examples, these spiking neural networks are reverse engineered to find the dynamic mechanisms that are fundamental to their performance. We show that considering multitasking and spiking within one system provides insightful ideas on the principles of neural computation.
Collapse
Affiliation(s)
- Mechislav M Pugavko
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia
| | - Oleg V Maslennikov
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia.
| | - Vladimir I Nekorkin
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
9
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|