Brambilla C, Marani R, Romeo L, Lavit Nicora M, Storm FA, Reni G, Malosio M, D'Orazio T, Scano A. Azure Kinect performance evaluation for human motion and upper limb biomechanical analysis.
Heliyon 2023;
9:e21606. [PMID:
38027881 PMCID:
PMC10663858 DOI:
10.1016/j.heliyon.2023.e21606]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Human motion tracking is a valuable task for many medical applications. Marker-based optoelectronic systems are considered the gold standard in human motion tracking. However, their use is not always feasible in clinics and industrial environments. On the other hand, marker-less sensors became valuable tools, as they are inexpensive, noninvasive and easy to use. However, their accuracy can depend on many factors including sensor positioning, light conditions and body occlusions. In this study, following previous works on the feasibility of marker-less systems for human motion monitoring, we investigate the performance of the Microsoft Azure Kinect sensor in computing kinematic and dynamic measurements of static postures and dynamic movements. According to our knowledge, it is the first time that this sensor is compared with a Vicon marker-based system to assess the best camera positioning while observing the upper body part movements of people performing several tasks. Twenty-five healthy volunteers were monitored to evaluate the effects of the several testing conditions, including the Azure Kinect positions, the light conditions, and lower limbs occlusions, on the tracking accuracy of kinematic, dynamic, and motor control parameters. From the statistical analysis of the performed measurements, the camera in the frontal position was the most reliable, the lighting conditions had almost no effects on the tracking accuracy, while the lower limbs occlusion worsened the accuracy of the upper limbs. The assessment of human static postures and dynamic movements based on experimental data proves the feasibility of applying the Azure Kinect to the biomechanical monitoring of human motion in several fields.
Collapse