Solak G, Jamone L. Haptic Exploration of Unknown Objects for Robust In-Hand Manipulation.
IEEE TRANSACTIONS ON HAPTICS 2023;
16:400-411. [PMID:
37527306 DOI:
10.1109/toh.2023.3300439]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Human-like robot hands provide the flexibility to manipulate a variety of objects that are found in unstructured environments. Knowledge of object properties and motion trajectory is required, but often not available in real-world manipulation tasks. Although it is possible to grasp and manipulate unknown objects, an uninformed grasp leads to inferior stability, accuracy, and repeatability of the manipulation. Therefore, a central challenge of in-hand manipulation in unstructured environments is to acquire this information safely and efficiently. We propose an in-hand manipulation framework that does not assume any prior information about the object and the motion, but instead extracts the object properties through a novel haptic exploration procedure and learns the motion from demonstration using dynamical movement primitives. We evaluate our approach by unknown object manipulation experiments using a human-like robot hand. The results show that haptic exploration improves the manipulation robustness and accuracy significantly, compared to the virtual spring framework baseline method that is widely used for grasping unknown objects.
Collapse