1
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
2
|
Gotoh O, Sugiyama Y, Tonooka A, Kosugi M, Kitaura S, Minegishi R, Sano M, Amino S, Furuya R, Tanaka N, Kaneyasu T, Kumegawa K, Abe A, Nomura H, Takazawa Y, Kanao H, Maruyama R, Noda T, Mori S. Genetic and epigenetic alterations in precursor lesions of endometrial endometrioid carcinoma. J Pathol 2024; 263:275-287. [PMID: 38734880 DOI: 10.1002/path.6278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 05/13/2024]
Abstract
The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Osamu Gotoh
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Yuko Sugiyama
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Akiko Tonooka
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Mayuko Kosugi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Sunao Kitaura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Ryu Minegishi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Masatoshi Sano
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Sayuri Amino
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Rie Furuya
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Norio Tanaka
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Tomoko Kaneyasu
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Akiko Abe
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Hidetaka Nomura
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Yutaka Takazawa
- Department of Pathology, Toranomon Hospital, Minato-ku, Japan
| | - Hiroyuki Kanao
- Division of Gynecology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Koto-ku, Japan
- Department of Genetic Diagnosis, Cancer Institute Hospital, JFCR, Koto-ku, Japan
| |
Collapse
|
3
|
Thapa R, Marmo K, Ma L, Torry DS, Bany BM. The Long Non-Coding RNA Gene AC027288.3 Plays a Role in Human Endometrial Stromal Fibroblast Decidualization. Cells 2024; 13:778. [PMID: 38727314 PMCID: PMC11083667 DOI: 10.3390/cells13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Kevin Marmo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donald S. Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| |
Collapse
|
4
|
Retis-Resendiz AM, Cid-Cruz Y, Velázquez-Hernández DM, Romero-Reyes J, León-Juárez M, García-Gómez E, Camacho-Arroyo I, Vázquez-Martínez ER. cAMP regulates the progesterone receptor gene expression through the protein kinase A pathway during decidualization in human immortalized endometrial stromal cells. Steroids 2024; 203:109363. [PMID: 38182066 DOI: 10.1016/j.steroids.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Decidualization, a crucial process for successful pregnancy establishment and maintenance, involves endometrial stromal cell differentiation. This process is orchestrated by estradiol (E2), progesterone, and other stimuli that increase intracellular cyclic adenosine monophosphate (cAMP) levels. The intracellular progesterone receptor (PR), encoded by the PGR gene, has a key role in decidualization. This study aimed to understand the role of sex steroids and cAMP in regulating PGR expression during the in vitro decidualization of the human immortalized endometrial stromal cell line, T-HESC. We subjected the cells to individual and combined treatments of E2, medroxyprogesterone (MPA), and cAMP. Additionally, we treated cells with PR and estrogen receptor antagonists and a protein kinase A (PKA) inhibitor. We evaluated the expression of PGR isoforms and decidualization-associated genes by RT-qPCR. Our findings revealed that cAMP induced PGR-B and PGR-AB expression by activating the PKA signaling pathway, while MPA downregulated their expression through the PR. Furthermore, downstream genes involved in decidualization, such as those coding for prolactin (PRL), insulin-like growth factor-binding protein-1 (IGFBP1), and Dickkopf-1 (DKK1), exhibited positive regulation via the cAMP-PKA pathway. Remarkably, MPA-activated PR signaling induced the expression of IGFBP1 and DKK1 but inhibited that of PRL. In conclusion, we have demonstrated that the PKA signaling pathway induces PGR gene expression during in vitro decidualization of the T-HESC human endometrial stromal cell line. This study has unraveled some of the intricate regulatory mechanisms governing PGR expression during this fundamental process for implantation and pregnancy maintenance.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Yesenia Cid-Cruz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Dora María Velázquez-Hernández
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología (INPer), Mexico City 11000, Mexico
| | - Elizabeth García-Gómez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico.
| |
Collapse
|
5
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
6
|
Thapa R, Druessel L, Ma L, Torry DS, Bany BM. ATOH8 Expression Is Regulated by BMP2 and Plays a Key Role in Human Endometrial Stromal Cell Decidualization. Endocrinology 2023; 165:bqad188. [PMID: 38060684 PMCID: PMC10729865 DOI: 10.1210/endocr/bqad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/21/2023]
Abstract
During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Logan Druessel
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63018, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|