1
|
Banks NF, Rogers EM, Helwig NJ, Schwager LE, Alpers JP, Schulte SL, Trachta ER, Lockwood CM, Jenkins ND. Acute effects of commercial energy drink consumption on exercise performance and cardiovascular safety: a randomized, double-blind, placebo-controlled, crossover trial. J Int Soc Sports Nutr 2024; 21:2297988. [PMID: 38197606 PMCID: PMC10783828 DOI: 10.1080/15502783.2023.2297988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
The aim of this study was to examine the acute effects of a non-caloric energy drink (C4E) compared to a traditional sugar-containing energy drink (MED) and non-caloric placebo (PLA) on exercise performance and cardiovascular safety. Thirty healthy, physically active males (25 ± 4 y) completed three experimental visits under semi-fasted conditions (5-10 h) and in randomized order, during which they consumed C4E, MED, or PLA matched for volume, appearance, taste, and mouthfeel. One hour after drink consumption, participants completed a maximal, graded exercise test (GXT) with measurement of pulmonary gases, an isometric leg extension fatigue test (ISOFTG), and had their cardiac electrical activity (ECG), leg blood flow (LBF), and blood pressure (BP) measured throughout the visit. Neither MED nor C4E had an ergogenic effect on maximal oxygen consumption, time to exhaustion, or peak power during the GXT (p > 0.05). Compared to PLA, MED reduced fat oxidation (respiratory exchange ratio (RER) +0.030 ± 0.01; p = 0.026) during the GXT and did not influence ISOFTG performance. Compared to PLA, C4E did not alter RER (p = 0.94) and improved impulse during the ISOFTG (+0.658 ± 0.25 V·s; p = 0.032). Relative to MED, C4E did not significantly improve gas exchange threshold (p = 0.05-0.07). Both MED and C4E increased systolic BP at rest (+7.1 ± 1.2 mmHg; p < 0.001 and + 5.7 ± 1.0 mmHg; p < 0.001, respectively), C4E increased SBP post-GXT (+13.3 ± 3.8 mmHg; p < 0.001), and MED increased SBP during recovery (+3.2 ± 1.1 mmHg; p < 0.001). Neither MED nor C4E influenced ECG measures (p ≥ 0.08) or LBF (p = 0.37) compared to PLA. C4E may be more efficacious for improving performance in resistance-type tasks without altering fat oxidation under semi-fasted conditions during fatiguing exercise bouts, but promotes similar changes in BP and HR to MED.
Collapse
Affiliation(s)
- Nile F. Banks
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Emily M. Rogers
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Nate J. Helwig
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Laura E. Schwager
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Justin P. Alpers
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Sydni L. Schulte
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | - Emma R. Trachta
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
| | | | - Nathaniel D.M. Jenkins
- University of Iowa, Integrative Laboratory of Applied Physiology and Lifestyle Medicine, Iowa City, IA, USA
- University of Iowa, Abboud Cardiovascular Research Center, Iowa City, IA, USA
| |
Collapse
|
2
|
Carbohydrates and Endurance Exercise: A Narrative Review of a Food First Approach. Nutrients 2023; 15:nu15061367. [PMID: 36986096 PMCID: PMC10054587 DOI: 10.3390/nu15061367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Carbohydrate (CHO) supplements such as bars, gels, drinks and powders have become ubiquitous as effective evidence-based CHO sources that improve endurance exercise performance. However, athletes are increasingly turning to more cost-effective ‘food-first’ approaches for CHO ingestion to improve exercise performance. Mixed CHO foods including cooked lentils, oats, honey, raisins, rice, and potatoes are all effective pre-exercise CHO food sources. Caution is advised when selecting some of these foods as a primary CHO source, as some athletes may be prone to gastrointestinal discomfort—especially regarding those foods where the quantities required for recommended CHO intake may be voluminous (e.g., potatoes). Palatability may be another barrier to the ingestion of some of these CHO-rich foods. Although most of these CHO-rich foods appear effective for exercise performance or recovery when consumed pre- and post-exercise, not all are viable to ingest during exercise due to difficulties in the quantities required, transport, and/or gastrointestinal discomfort. Raisins, bananas and honey may be particularly useful CHO foods for consumption during exercise, as they are easily transportable. Athletes should trial CHO food sources before, during and/or following training before implementation during competition.
Collapse
|
3
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|