1
|
Hill M, Kiesewetter P, Milani TL, Mitschke C. An Investigation of Running Kinematics with Recovered Anterior Cruciate Ligament Reconstruction on a Treadmill and In-Field Using Inertial Measurement Units: A Preliminary Study. Bioengineering (Basel) 2024; 11:404. [PMID: 38671825 PMCID: PMC11048090 DOI: 10.3390/bioengineering11040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Anterior cruciate ligament reconstruction (ACLR) may affect movement even years after surgery. The purpose of this study was to determine possible interlimb asymmetries due to ACLR when running on a treadmill and in field conditions, with the aim of contributing to the establishment of objective movement assessment in real-world settings; moreover, we aimed to gain knowledge on recovered ACLR as a biomechanical risk factor. Eight subjects with a history of unilateral ACLR 5.4 ± 2.8 years after surgery and eight healthy subjects ran 1 km on a treadmill and 1 km on a concrete track. The ground contact time and triaxial peak tibial accelerations were recorded using inertial measurement units. Interlimb differences within subjects were tested and compared between conditions. There were no significant differences between limbs in the ACLR subjects or in healthy runners for any of the chosen parameters on both running surfaces. However, peak tibial accelerations were higher during field running (p-values < 0.01; Cohen's d effect sizes > 0.8), independent of health status. To minimize limb loading due to higher impacts during field running, this should be considered when choosing a running surface, especially in rehabilitation or when running with a minor injury or health issues.
Collapse
Affiliation(s)
| | | | | | - Christian Mitschke
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany; (M.H.); (P.K.); (T.L.M.)
| |
Collapse
|
2
|
Gaiesky SKT, Fridman L, Michie T, Blazey P, Tran N, Schneeberg A, Napier C. The one-week and three-month reliability of acceleration outcomes from an insole-embedded inertial measurement unit during treadmill running. Sports Biomech 2023:1-15. [PMID: 37941419 DOI: 10.1080/14763141.2023.2275258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Inertial measurement units (IMUs) represent an exciting opportunity for researchers to broaden our understanding of running-related injuries, and for clinicians to expand their application of running gait analysis. The primary aim of our study was to investigate the 1-week (short-term) and 3-month (long-term) reliability of peak resultant, vertical, and anteroposterior accelerations derived from insole-embedded IMUs. The secondary aim was to assess the reliability of peak acceleration variability and left-right limb symmetry in all directions over the short and long term. A sample of healthy adult rearfoot runners (n = 23; age 41.7 ± 11.2 years) ran at a variety of speeds (2.5 m/s, 3.0 m/s, and 3.5 m/s) on a treadmill in standardised footwear with insole-embedded IMUs in each shoe. Peak accelerations exhibited good to excellent short-term reliability and moderate to excellent long-term reliability in all directions. Peak acceleration variability showed poor to good short- and long-term reliability, whereas the symmetry of peak accelerations demonstrated moderate to excellent and moderate to good short- and long-term reliability, respectively. Our results demonstrate how insole-embedded IMUs represent a viable option for clinicians to measure peak accelerations within the clinic.
Collapse
Affiliation(s)
- Sean K T Gaiesky
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
| | | | - Tom Michie
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Paul Blazey
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | | - Christopher Napier
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
3
|
Mason R, Godfrey A, Barry G, Stuart S. Wearables for running gait analysis: A study protocol. PLoS One 2023; 18:e0291289. [PMID: 37695752 PMCID: PMC10495009 DOI: 10.1371/journal.pone.0291289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Quantitative running gait analysis is an important tool that provides beneficial outcomes to injury risk/recovery or performance assessment. Wearable devices have allowed running gait to be evaluated in any environment (i.e., laboratory or real-world settings), yet there are a plethora of different grades of devices (i.e., research-grade, commercial, or novel multi-modal) available with little information to make informed decisions on selection. This paper outlines a protocol that will examine different grades of wearables for running gait analysis in healthy individuals. Specifically, this pilot study will: 1) examine analytical validity and reliability of wearables (research-grade, commercial, high-end multimodal) within a controlled laboratory setting; 2) examine analytical validation of different grades of wearables in a real-world setting, and 3) explore clinical validation and usability of wearables for running gait analysis (e.g., injury history (previously injured, never injured), performance level (novice, elite) and relationship to meaningful outcomes). The different grades of wearable include: (1) A research-grade device, the Ax6 consists of a configurable tri-axial accelerometer and tri-axial gyroscope with variable sampling capabilities; (2) attainable (low-grade) commercial with proprietary software, the DorsaVi ViMove2 consisting of two, non-configurable IMUs modules, with a fixed sampling rate and (3) novel multimodal high-end system, the DANU Sports System that is a pair of textile socks, that contain silicone based capacitive pressure sensors, and configurable IMU modules with variable sampling rates. Clinical trial registration: Trial registration: NCT05277181.
Collapse
Affiliation(s)
- Rachel Mason
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom
| | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle, United Kingdom
| | - Gillian Barry
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom
- Northumbria Healthcare NHS foundation trust, North Shields, United Kingdom
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
4
|
Zeng Z, Liu Y, Wang L. Validity of IMU measurements on running kinematics in non-rearfoot strike runners across different speeds. J Sports Sci 2023; 41:1083-1092. [PMID: 37733423 DOI: 10.1080/02640414.2023.2259211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
This study aims to determine the validity of the lower extremity joint kinematics measured by inertial measurement units (IMUs) in non-rearfoot strike pattern (NRFS) runners across different speeds. Fifteen NRFS runners completed three 2-min running tests on a treadmill in random order at 8, 10 and 12 km/h, whilst data were synchronously collected using the IMU system and an optical motion capture system. Before the offset was corrected, the validity of the knee angle waveform was higher than that of the hip and ankle; after the offset was corrected, the validity increased in all three joints. The correlation between the touchdown angles in the sagittal plane measured by the two systems was relatively high after the offset was corrected. The running speed influenced the offset-corrected measurements, with higher error values at higher speeds. The IMU system was able to provide measurements of running kinematics in the sagittal plane of NRFS runners at different running speeds but was unable to reliably measure motion in the frontal and horizontal planes. Future research should analyse the 3D gait of NRFS runners under a larger range of speed conditions to provide evidentiary support for the use of IMUs in running analysis outside the laboratory.
Collapse
Affiliation(s)
- Ziwei Zeng
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Yue Liu
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Lin Wang
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
5
|
Mason R, Pearson LT, Barry G, Young F, Lennon O, Godfrey A, Stuart S. Wearables for Running Gait Analysis: A Systematic Review. Sports Med 2023; 53:241-268. [PMID: 36242762 PMCID: PMC9807497 DOI: 10.1007/s40279-022-01760-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Running gait assessment has traditionally been performed using subjective observation or expensive laboratory-based objective technologies, such as three-dimensional motion capture or force plates. However, recent developments in wearable devices allow for continuous monitoring and analysis of running mechanics in any environment. Objective measurement of running gait is an important (clinical) tool for injury assessment and provides measures that can be used to enhance performance. OBJECTIVES We aimed to systematically review the available literature investigating how wearable technology is being used for running gait analysis in adults. METHODS A systematic search of the literature was conducted in the following scientific databases: PubMed, Scopus, Web of Science and SPORTDiscus. Information was extracted from each included article regarding the type of study, participants, protocol, wearable device(s), main outcomes/measures, analysis and key findings. RESULTS A total of 131 articles were reviewed: 56 investigated the validity of wearable technology, 22 examined the reliability and 77 focused on applied use. Most studies used inertial measurement units (n = 62) [i.e. a combination of accelerometers, gyroscopes and magnetometers in a single unit] or solely accelerometers (n = 40), with one using gyroscopes alone and 31 using pressure sensors. On average, studies used one wearable device to examine running gait. Wearable locations were distributed among the shank, shoe and waist. The mean number of participants was 26 (± 27), with an average age of 28.3 (± 7.0) years. Most studies took place indoors (n = 93), using a treadmill (n = 62), with the main aims seeking to identify running gait outcomes or investigate the effects of injury, fatigue, intrinsic factors (e.g. age, sex, morphology) or footwear on running gait outcomes. Generally, wearables were found to be valid and reliable tools for assessing running gait compared to reference standards. CONCLUSIONS This comprehensive review highlighted that most studies that have examined running gait using wearable sensors have done so with young adult recreational runners, using one inertial measurement unit sensor, with participants running on a treadmill and reporting outcomes of ground contact time, stride length, stride frequency and tibial acceleration. Future studies are required to obtain consensus regarding terminology, protocols for testing validity and the reliability of devices and suitability of gait outcomes. CLINICAL TRIAL REGISTRATION CRD42021235527.
Collapse
Affiliation(s)
- Rachel Mason
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Liam T Pearson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gillian Barry
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Fraser Young
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | - Alan Godfrey
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Zeng Z, Liu Y, Li P, Wang L. Validity and reliability of inertial measurement units measurements for running kinematics in different foot strike pattern runners. Front Bioeng Biotechnol 2022; 10:1005496. [PMID: 36582839 PMCID: PMC9793257 DOI: 10.3389/fbioe.2022.1005496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to assess the validity and reliability of the three-dimensional joint kinematic outcomes obtained by the inertial measurement units (IMUs) for runners with rearfoot strike pattern (RFS) and non-rearfoot strike pattern (NRFS). The IMUs system and optical motion capture system were used to simultaneous collect 3D kinematic of lower extremity joint data from participants running at 12 km/h. The joint angle waveforms showed a high correlation between the two systems after the offset correction in the sagittal plane (NRFS: coefficient of multiple correlation (CMC) = 0.924-0.968, root mean square error (RMSE) = 4.6°-13.7°; RFS: CMC = 0.930-0.965, RMSE = 3.1°-7.7°), but revealed high variability in the frontal and transverse planes (NRFS: CMC = 0.924-0.968, RMSE = 4.6°-13.7°; RFS: CMC = 0.930-0.965, RMSE = 3.1°-7.7°). The between-rater and between-day reliability were shown to be very good to excellent in the sagittal plane (between-rater: NRFS: CMC = 0.967-0.975, RMSE = 1.9°-2.9°, RFS: CMC = 0.922-0.989, RMSE = 1.0°-2.5°; between-day: NRFS: CMC = 0.950-0.978, RMSE = 1.6°-2.7°, RFS: CMC = 0.920-0.989, RMSE = 1.7°-2.2°), whereas the reliability was weak to very good (between-rater: NRFS: CMC = 0.480-0.947, RMSE = 1.1°-2.7°, RFS: CMC = 0.646-0.873, RMSE = 0.7°-2.4°; between-day: NRFS: CMC = 0.666-0.867, RMSE = 0.7°-2.8°, RFS: CMC = 0.321-0.805, RMSE = 0.9°-5.0°) in the frontal and transverse planes across all joints in both types of runners. The IMUs system was a feasible tool for measuring lower extremity joint kinematics in the sagittal plane during running, especially for RFS runners. However, the joint kinematics data in frontal and transverse planes derived by the IMUs system need to be used with caution.
Collapse
Affiliation(s)
- Ziwei Zeng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yue Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Pan Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lin Wang
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China,*Correspondence: Lin Wang,
| |
Collapse
|