1
|
Cawood GL, Ton J. Decoding resilience: ecology, regulation, and evolution of biosynthetic gene clusters. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00241-3. [PMID: 39393973 DOI: 10.1016/j.tplants.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
Secondary metabolism is crucial for plant survival and can generate chemistry with nutritional, therapeutic, and industrial value. Biosynthetic genes of selected secondary metabolites cluster within localised chromosomal regions. The arrangement of these biosynthetic gene clusters (BGCs) challenges the long-held model of random gene order in eukaryotes, raising questions about their regulation, ecological significance, and evolution. In this review, we address these questions by exploring the contribution of BGCs to ecologically relevant plant-biotic interactions, while also evaluating the molecular-(epi)genetic mechanisms controlling their coordinated stress- and tissue-specific expression. Based on evidence that BGCs have distinct chromatin signatures and are enriched with transposable elements (TEs), we integrate emerging hypotheses into an updated evolutionary model emphasising how stress-induced epigenetic processes have shaped BGC formation.
Collapse
Affiliation(s)
- George Lister Cawood
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Yates P, Janiol J, Li C, Song BH. Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. PLANTS (BASEL, SWITZERLAND) 2024; 13:319. [PMID: 38276776 PMCID: PMC10819391 DOI: 10.3390/plants13020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN.
Collapse
Affiliation(s)
- Ping Yates
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| | - Juddy Janiol
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| | - Changbao Li
- Syngenta Crop Protection LLC, 9 Davis Drive, Durham, NC 27709, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| |
Collapse
|
3
|
Huang FC, Effenberger I, Fischer T, Hahn IL, Hoffmann T, Schwab W. Comparative Physicochemical and Biochemical Characterization of Small-Molecule Glucosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15972-15980. [PMID: 36475669 DOI: 10.1021/acs.jafc.2c07312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glycosylation of small molecules can significantly improve their physicochemical and biological properties. Only recently, decisive improvements in the biotechnological production of small-molecule glucosides (SMGs) have resulted in a large number of these compounds now being commercially available. In this study, we have analyzed a number of physical, chemical, and biological parameters of 31 SMGs, including solubility, stability, melting and pyrolysis points, partition coefficient log P, minimum inhibitory concentration against Escherichia coli (MIC), and enzymatic degradability. The properties such as water solubility, pH stability, and MICs of the glycosides were strongly dependent on the structures of the respective aglycones, which is why the SMG clustered according to their aglycones in most cases. Phenolic and furanone glucosides were readily hydrolyzed by saliva and skin microflora, whereas monoterpenol glycosides were poorer substrates for the enzymes involved. The results of this comparative analysis of SMGs provide valuable information for elucidating the biological functions of SMGs and the future technological applications of these useful natural products.
Collapse
Affiliation(s)
| | | | - Thilo Fischer
- 4GENE, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Isabella-Louisa Hahn
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| |
Collapse
|
4
|
Marshall CJ, Garrett K, Van Vliet S, Beck MR, Gregorini P. Dietary and Animal Strategies to Reduce the Environmental Impact of Pastoral Dairy Systems Result in Altered Nutraceutical Profiles in Milk. Animals (Basel) 2022; 12:ani12212994. [PMID: 36359120 PMCID: PMC9657149 DOI: 10.3390/ani12212994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to evaluate and provide further insights into how dairy cows genetically divergent for milk urea N breeding values [MUNBV, high (2.21 ± 0.21) vs. low (−1.16 ± 0.21); µ ± SEM], consuming either fresh cut Plantain (Plantago lanceolata L., PL) or Ryegrass (Lolium perenne L., RG) herbage, impacted the nutraceutical profile of whole milk by investigating amino and fatty acid composition and applying metabolomic profiling techniques. Both diet and MUNBV, and their interaction term, were found to affect the relative abundance of alanine, glycine, histidine, and phenylalanine in the milk (p < 0.05), but their minor absolute differences (up to ~0.13%) would not be considered biologically relevant. Differences were also detected in the fatty acid profile based on MUNBV and diet (p < 0.05) with low MUNBV cows having a greater content of total unsaturated fatty acids (+16%) compared to high MUNBV cows and cows consuming PL having greater content of polyunsaturated fatty acids (+92%), omega 3 (+101%) and 6 (+113%) compared to RG. Differences in the metabolomic profile of the milk were also detected for both MUNBV and dietary treatments. Low MUNBV cows were found to have greater abundances of choline phosphate, phosphorylethanolamine, N-acetylglucosamine 1-phosphate, and 2-dimethylaminoethanol (p < 0.05). High MUNBV cows had a greater abundance of methionine sulfoxide, malate, 1,5-anhydroglucitol (1,5-AG), glycerate, arabitol/xylitol, 3-hydroxy-3-methylglutarate, 5-hydroxylysine and cystine (p < 0.05). Large differences (p < 0.05) were also detected as a result of diet with PL diets having greater abundances of the phytochemicals 4-acetylcatechol sulfate, 4-methylcatechol sulfate, and p-cresol glucuronide whilst RG diets had greater abundances of 2,6-dihydroxybenzoic acid, 2-acetamidophenol sulfate, and 2-hydroxyhippurate. The results of this study indicate the potential to alter the nutraceutical value of milk from dietary and genetic strategies that have been previously demonstrated to reduce environmental impact.
Collapse
Affiliation(s)
- Cameron Joel Marshall
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Correspondence:
| | - Konagh Garrett
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Stephan Van Vliet
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT 84322, USA
| | - Matthew Raymond Beck
- Livestock Nutrient Management Research Unit, The Agricultural Research Service, The United States Department of Agriculture (USDA-ARS), 300 Simmons Drive, Unit 10, Bushland, TX 79012, USA
| | - Pablo Gregorini
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
5
|
Provenza FD, Anderson C, Gregorini P. We Are the Earth and the Earth Is Us: How Palates Link Foodscapes, Landscapes, Heartscapes, and Thoughtscapes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.547822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Humans are participating in the sixth mass extinction, and for the first time in 200,000 years, our species may be on the brink of extinction. We are facing the greatest challenges we have ever encountered, namely how to nourish eight billion people in the face of changing climates ecologically, diminish disparity between the haves and the have-nots economically, and ease xenophobia, fear, and hatred socially? Historically, our tribal nature served us well, but the costs of tribalism are now far too great for one people inhabiting one tiny orb. If we hope to survive, we must mend the divides that isolate us from one another and the communities we inhabit. While not doing so could be our undoing, doing so could transform our collective consciousness into one that respects, nourishes, and embraces our interdependence with life on Earth. At a basic level, we can cultivate life by using nature as a model for how to produce and consume food; by decreasing our dependence on fossil fuels for energy to grow, process, and transport food; and by transcending persistent battles over one-size-fits-all plant- or animal-based diets. If we learn to do so in ways that nourish life, we may awaken individually and collectively to the wisdom of the Maori proverb Ko au te whenua. Ko te whenua Ko au: I am the land. The land is me. In this paper, we use “scapes” —foodscapes, landscapes, heartscapes, and thoughtscapes—as unifying themes to discuss our linkages with communities. We begin by considering how palates link animals with foodscapes. Next, we address how palates link foodscapes with landscapes. We then consider how, through our reverence for life, heartscapes link palates with foodscapes and landscapes. We conclude with transformations of thoughtscapes needed to appreciate life on Earth as a community to which we belong, rather than as a commodity that belongs to us.
Collapse
|