1
|
Reilly EC, Gutknecht JL, Sheaffer CC, Jungers JM. Reductions in soil water nitrate beneath a perennial grain crop compared to an annual crop rotation on sandy soil. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.996586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitrate (NO3--N) leaching into groundwater as a result of high nitrogen (N) fertilizer rates to annual crops presents human health risks and high costs associated with water treatment. Leaching is a particularly serious concern on sandy soils overlying porous bedrock. Intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host.) Barkw. & D.R. Dewey], is a perennial grass that is being bred to produce agronomically and economically viable grain, which is commercially available as Kernza®. Intermediate wheatgrass is a low-input crop has the potential to produce profitable grain and biomass yields while reducing NO3--N leaching on sandy soils compared with common annual row crop rotations in the Upper Midwest. We compared grain yields, biomass yields, soil solution NO3--N concentration, soil extractable NO3--N, soil water content, and root biomass under IWG and a conventionally managed corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotation for 3 years on a Verndale sandy loam in Central Minnesota. Mean soil solution NO3--N was 77–96% lower under IWG than the annual crop rotation. Soil water content was greater under annuals compared to IWG early in the growing season, suggesting greater water use by IWG during this time. Interactions between crop treatments and depth were observed for soil water content in Year 3. Root biomass from 0 to 60 cm below the soil surface was five times greater beneath IWG compared to soybean, which may explain differences in soil extractable and solution NO3--N among crops. With irrigation on coarse structured soils, IWG grain yields were 854, 434, and 222 kg ha−1 for Years 1–3 and vegetative biomass averaged 4.65 Mg ha−1 yr−1; comparable to other reports on heavier soils in the region. Annual crop grain yields were consistent with local averages. These results confirm that IWG effectively reduces soil solution NO3--N concentrations even on sandy soils, supporting its potential for broader adoption on land vulnerable to NO3--N leaching.
Collapse
|
2
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|