1
|
Ghaderi S, Mohammadi S, Fatehi F. Diffusion Tensor Imaging (DTI) Biomarker Alterations in Brain Metastases and Comparable Tumors: A Systematic Review of DTI and Tractography Findings. World Neurosurg 2024; 190:113-129. [PMID: 38986953 DOI: 10.1016/j.wneu.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Brain metastases (BMs) are the most frequent tumors of the central nervous system. Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides insights into brain microstructural alterations and tensor metrics and generates tractography to visualize white matter fiber tracts based on diffusion directionality. This systematic review assessed evidence from DTI biomarker alterations in BMs and comparable tumors such as glioblastoma. METHODS PubMed, Scopus, and Web of Science were searched, and published between January 2000 and August 2023. The key inclusion criteria were studies reporting DTI metrics in BMs and comparisons with other tumors. Data on study characteristics, tumor types, sample details, and main DTI findings were extracted. RESULTS Fifty-seven studies with 1592 BM patients and 1578 comparable brain tumors were included. Peritumoral fractional anisotropy (FA) consistently differentiates BMs from primary brain tumors, whereas intratumoral FA shows limited discriminatory power. Mean diffusivity increased in BMs versus comparators. Intratumoral metrics were less consistent but revealed differences in BM origin. Axial and radial diffusivity have provided insights into the effects of radiation, tumor origin, and infiltration. Axial diffusivity/radial diffusivity differentiated tumor infiltration from vasogenic edema. Tractography revealed anatomical relationships between white matter tracts and BMs. In addition, tractography-guided BM surgery and radiotherapy planning are required. Machine learning models incorporating DTI biomarkers/metrics accurately classified BMs versus comparators and improved diagnostic classification. CONCLUSIONS DTI metrics provide noninvasive biomarkers for distinguishing BMs from other tumors and predicting outcomes. Key metrics included peritumoral FA and mean diffusivity.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.
| |
Collapse
|
2
|
Ge X, Ma Y, Huang X, Gan T, Ma W, Liu G, Xiong Y, Li M, Wang X, Zhang J. Distinguishment between high-grade gliomas and solitary brain metastases in peritumoural oedema: quantitative analysis using synthetic MRI at 3 T. Clin Radiol 2024; 79:e361-e368. [PMID: 38103981 DOI: 10.1016/j.crad.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/12/2023] [Accepted: 10/21/2023] [Indexed: 12/19/2023]
Abstract
AIM To investigate the efficacy of synthetic magnetic resonance imaging (MRI) in distinguishing high-grade gliomas (HGGs) from solitary brain metastases (SBMs) in peritumoural oedema. MATERIALS AND METHODS Thirty-five patients with HGGs and 25 patients with SBMs were recruited and scanned using synthetic MRI using a 3 T scanner. Two radiologists measured synthetic MRI-derived relaxation values independently (T1, T2, proton density [PD]) in the peritumoural oedema, which was used to generate quantitative metrics before (T1native, T2native, and PDnative) and after (T1post, T2post, and PDpost) contrast agent injection. Student's t-test or the Mann-Whitney U-test was performed to detect statistically significant differences in the aforementioned metrics in peritumoural oedema between HGGs and SBMs. The receiver operating characteristic (ROC) curves were plotted to evaluate the efficacy of each metric in distinguishing the two groups, and the areas under the curves (AUCs) were compared pairwise by performing the Delong test. RESULTS The mean T1native, T2native, and T1post values in the peritumoural oedema of HGGs were significantly lower compared with SBMs (all p<0.05). The T1post value had a higher AUC (0.843) in differentiating HGGs and SBMs than all other individual metrics (all p<0.05). The combined T1native, T2native, and T1post model had the best distinguishing performance with an AUC, sensitivity, and specificity of 0.987, 94.3%, and 100%, respectively. CONCLUSIONS Synthetic MRI may be a potential supplement to the preoperative diagnosis of HGGs and SBMs in clinical practice, as the synthetic MRI-derived tri-parametric model in the peritumoural oedema showed significantly improved diagnostic performance in distinguishing HGGs from SBMs.
Collapse
Affiliation(s)
- X Ge
- Second Clinical School, Lanzhou University, Lanzhou 70030, China; Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Y Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - X Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750003, China
| | - T Gan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - W Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - G Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Y Xiong
- GE Healthcare, MR Research, Beijing 100004, China
| | - M Li
- GE Healthcare, MR Enhancement Application, Beijing 100004, China
| | - X Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750003, China.
| | - J Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 70030, China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China.
| |
Collapse
|
3
|
Hooper GW, Ansari S, Johnson JM, Ginat DT. Advances in the Radiological Evaluation of and Theranostics for Glioblastoma. Cancers (Basel) 2023; 15:4162. [PMID: 37627190 PMCID: PMC10453051 DOI: 10.3390/cancers15164162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Imaging is essential for evaluating patients with glioblastoma. Traditionally a multimodality undertaking, CT, including CT cerebral blood profusion, PET/CT with traditional fluorine-18 fluorodeoxyglucose (18F-FDG), and MRI have been the mainstays for diagnosis and post-therapeutic assessment. However, recent advances in these modalities, in league with the emerging fields of radiomics and theranostics, may prove helpful in improving diagnostic accuracy and treating the disease.
Collapse
Affiliation(s)
| | - Shehbaz Ansari
- Rush University Medical Center, Department of Radiology and Nuclear Medicine, Chicago, IL 60612, USA;
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Zakharova NE, Batalov AI, Pogosbekian EL, Chekhonin IV, Goryaynov SA, Bykanov AE, Tyurina AN, Galstyan SA, Nikitin PV, Fadeeva LM, Usachev DY, Pronin IN. Perifocal Zone of Brain Gliomas: Application of Diffusion Kurtosis and Perfusion MRI Values for Tumor Invasion Border Determination. Cancers (Basel) 2023; 15:2760. [PMID: 37345097 DOI: 10.3390/cancers15102760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Purpose: To determine the borders of malignant gliomas with diffusion kurtosis and perfusion MRI biomarkers. (2) Methods: In 50 high-grade glioma patients, diffusion kurtosis and pseudo-continuous arterial spin labeling (pCASL) cerebral blood flow (CBF) values were determined in contrast-enhancing area, in perifocal infiltrative edema zone, in the normal-appearing peritumoral white matter of the affected cerebral hemisphere, and in the unaffected contralateral hemisphere. Neuronavigation-guided biopsy was performed from all affected hemisphere regions. (3) Results: We showed significant differences between the DKI values in normal-appearing peritumoral white matter and unaffected contralateral hemisphere white matter. We also established significant (p < 0.05) correlations of DKI with Ki-67 labeling index and Bcl-2 expression activity in highly perfused enhancing tumor core and in perifocal infiltrative edema zone. CBF correlated with Ki-67 LI in highly perfused enhancing tumor core. One hundred percent of perifocal infiltrative edema tissue samples contained tumor cells. All glioblastoma samples expressed CD133. In the glioblastoma group, several normal-appearing white matter specimens were infiltrated by tumor cells and expressed CD133. (4) Conclusions: DKI parameters reveal changes in brain microstructure invisible on conventional MRI, e.g., possible infiltration of normal-appearing peritumoral white matter by glioma cells. Our results may be useful for plotting individual tumor invasion maps for brain glioma surgery or radiotherapy planning.
Collapse
Affiliation(s)
- Natalia E Zakharova
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Artem I Batalov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Eduard L Pogosbekian
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Ivan V Chekhonin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Sergey A Goryaynov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Andrey E Bykanov
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Anastasia N Tyurina
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Suzanna A Galstyan
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Pavel V Nikitin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Lyudmila M Fadeeva
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Dmitry Yu Usachev
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| | - Igor N Pronin
- Federal State Autonomous Institution "N.N. Burdenko National Medical Research Center of Neurosurgery" of the Ministry of Health of the Russian, 4th Tverskaya-Yamskaya Str. 16, Moscow 125047, Russia
| |
Collapse
|
5
|
Fioni F, Chen SJ, Lister INE, Ghalwash AA, Long MZ. Differentiation of high grade glioma and solitary brain metastases by measuring relative cerebral blood volume and fractional anisotropy: a systematic review and meta-analysis of MRI diagnostic test accuracy studies. Br J Radiol 2023; 96:20220052. [PMID: 36278795 PMCID: PMC10997014 DOI: 10.1259/bjr.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study aims to research the efficacy of MRI (I) for differentiating high-grade glioma (HGG) (P) with solitary brain metastasis (SBM) (C) by creating a combination of relative cerebral blood volume (rCBV) (O) and fractional anisotropy (FA) (O) in patients with intracerebral tumors. METHODS Searches were conducted on September 2021 with no publication date restriction, using an electronic search for related articles published in English, from PubMed (1994 to September 2021), Scopus (1977 to September 2021), Web of Science (1985 to September 2021), and Cochrane (1997 to September 2021). A total of 1056 studies were found, with 23 used for qualitative and quantitative data synthesis. Inclusion criteria were: patients diagnosed with HGG and SBM without age, sex, or race restriction; MRI examination of rCBV and FA; reliable histopathological diagnostic method as the gold-standard for all conditions of interest; observational and clinical studies. Newcastle-Ottawa quality assessment Scale (NOS) and Cochrane risk of bias tool (ROB) for observational and clinical trial studies were managed to appraise the quality of individual studies included. Data extraction results were managed using Mendeley and Excel, pooling data synthesis was completed using the Review Manager 5.4 software with random effect model to discriminate HGG and SBM, and divided into four subgroups. RESULTS There were 23 studies included with a total sample size of 597 HGG patients and 373 control groups/SBM. The analysis was categorized into four subgroups: (1) the subgroup with rCBV values in the central area of the tumor/intratumoral (399 HGG and 232 SBM) shows that HGG patients are not significantly different from SBM/controls group (SMD [95% CI] = -0.27 [-0.66, 0.13]), 2) the subgroup with rCBV values in the peritumoral area (452 HGG and 274 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] = -1.23 [-1.45 to -1.01]), (3) the subgroup with FA values in the central area of the tumor (249 HGG and 156 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] = - 0.44 [-0.84,-0.04]), furthermore (4) the subgroup with FA values in the peritumoral area (261 HGG and 168 SBM) shows that the HGG patients are significantly higher than the SBM (SMD [95% CI] = -0.59 [-1.02,-0.16]). CONCLUSION Combining rCBV and FA measurements in the peritumoral region and FA in the intratumoral region increase the accuracy of MRI examination to differentiate between HGG and SBM patients effectively. Confidence in the accuracy of our results may be influenced by major interstudy heterogeneity. Whereas the I2 for the rCBV in the intratumoral subgroup was 80%, I2 for the rCBV in the peritumoral subgroup was 39%, and I2 for the FA in the intratumoral subgroup was 69%, and I2 for the FA in the peritumoral subgroup was 74%. The predefined accurate search criteria, and precise selection and evaluation of methodological quality for included studies, strengthen this studyOur study has no funder, no conflict of interest, and followed an established PROSPERO protocol (ID: CRD42021279106). ADVANCES IN KNOWLEDGE The combination of rCBV and FA measurements' results is promising in differentiating HGG and SBM.
Collapse
Affiliation(s)
- Fioni Fioni
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| | - Song Jia Chen
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| | - I Nyoman Ehrich Lister
- Medicine, Universitas Prima Indonesia and Royal Prima
Hospital, Medan, North Sumatera, Indoneisa
| | | | - Ma Zhan Long
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| |
Collapse
|
6
|
Diffusion tensor imaging derived metrics in high grade glioma and brain metastasis differentiation. ARCHIVE OF ONCOLOGY 2022. [DOI: 10.2298/aoo210828007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Pretreatment differentiation between glioblastoma and metastasis
is a frequently encountered dilemma in neurosurgical practice. Distinction
is required for precise planning of resection or radiotherapy, and also for
defining further diagnostic procedures. Morphology and spectroscopy imaging
features are not specific and frequently overlap. This limitation of
magnetic resonance imaging and magnetic resonance spectroscopy was the
reason to initiate this study. The aim of the present study was to determine
whether the dataset of diffusion tensor imaging metrics contains information
which may be used for the distinction between primary and secondary
intra-axial neoplasms. Methods: Two diffusion tensor imaging parameters were
measured in 81 patients with an expansive, ring-enhancing, intra-axial
lesion on standard magnetic resonance imaging (1.5 T system). All tumors
were histologically verified glioblastoma or secondary deposit. For
qualitative analysis, two regions of interest were defined: intratumoral and
immediate peritumoral region (locations 1 and 2, respectively). Fractional
anisotropy and mean difusivity values of both groups were compared.
Additional test was performed to determine if there was a significant
difference in mean values between two locations. Results: A statistically
significant difference was found in fractional anisotropy values among two
locations, with decreasing values in the direction of neoplastic
infiltration, although such difference was not observed in fractional
anisotropy values in the group with secondary tumors. Mean difusivity values
did not appear helpful in differentiation between these two entities. In
both groups there was no significant difference in mean difusivity values,
neither in intratumoral nor in peritumoral location. Conclusion: The results
of our study justify associating the diffusion tensor imaging technique to
conventional morphologic magnetic resonance imaging as an additional
diagnostic tool for the distinction between primary and secondary
intra-axial lesions. Quantitative analysis of diffusion tensor imaging
metric, in particular measurement of fractional anisotropy in peritumoral
edema facilitates accurate diagnosis.
Collapse
|
7
|
Starck L, Zaccagna F, Pasternak O, Gallagher FA, Grüner R, Riemer F. Effects of Multi-Shell Free Water Correction on Glioma Characterization. Diagnostics (Basel) 2021; 11:2385. [PMID: 34943621 PMCID: PMC8700586 DOI: 10.3390/diagnostics11122385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/31/2023] Open
Abstract
Diffusion MRI is a useful tool to investigate the microstructure of brain tumors. However, the presence of fast diffusing isotropic signals originating from non-restricted edematous fluids, within and surrounding tumors, may obscure estimation of the underlying tissue characteristics, complicating the radiological interpretation and quantitative evaluation of diffusion MRI. A multi-shell regularized free water (FW) elimination model was therefore applied to separate free water from tissue-related diffusion components from the diffusion MRI of 26 treatment-naïve glioma patients. We then investigated the diagnostic value of the derived measures of FW maps as well as FW-corrected tensor-derived maps of fractional anisotropy (FA). Presumed necrotic tumor regions display greater mean and variance of FW content than other parts of the tumor. On average, the area under the receiver operating characteristic (ROC) for the classification of necrotic and enhancing tumor volumes increased by 5% in corrected data compared to non-corrected data. FW elimination shifts the FA distribution in non-enhancing tumor parts toward higher values and significantly increases its entropy (p ≤ 0.003), whereas skewness is decreased (p ≤ 0.004). Kurtosis is significantly decreased (p < 0.001) in high-grade tumors. In conclusion, eliminating FW contributions improved quantitative estimations of FA, which helps to disentangle the cancer heterogeneity.
Collapse
Affiliation(s)
- Lea Starck
- Department of Physics and Technology, University of Bergen, N-5007 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, University of Bergen, N-5021 Bergen, Norway;
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bellaria Hospital, 40139 Bologna, Italy
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA;
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Renate Grüner
- Department of Physics and Technology, University of Bergen, N-5007 Bergen, Norway;
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, University of Bergen, N-5021 Bergen, Norway;
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, University of Bergen, N-5021 Bergen, Norway;
| |
Collapse
|
8
|
Seow P, Hernowo AT, Narayanan V, Wong JHD, Bahuri NFA, Cham CY, Abdullah NA, Kadir KAA, Rahmat K, Ramli N. Neural Fiber Integrity in High- Versus Low-Grade Glioma using Probabilistic Fiber Tracking. Acad Radiol 2021; 28:1721-1732. [PMID: 33023809 DOI: 10.1016/j.acra.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/02/2023]
Abstract
RATIONALE AND OBJECTIVES Gliomatous tumors are known to affect neural fiber integrity, either by displacement or destruction. The aim of this study is to investigate the integrity and distribution of the white matter tracts within and around the glioma regions using probabilistic fiber tracking. MATERIAL AND METHODS Forty-two glioma patients were subjected to MRI using a standard tumor protocol with diffusion tensor imaging (DTI). The tumor and peritumor regions were delineated using snake model with reference to structural and diffusion MRI. A preprocessing pipeline of the structural MRI image, DTI data, and tumor regions was implemented. Tractography was performed to delineate the white matter (WM) tracts in the selected tumor regions via probabilistic fiber tracking. DTI indices were investigated through comparative mapping of WM tracts and tumor regions in low-grade gliomas (LGG) and high-grade gliomas (HGG). RESULTS Significant differences were seen in the planar tensor (Cp) in peritumor regions; mean diffusivity, axial diffusivity and pure isotropic diffusion in solid-enhancing tumor regions; and fractional anisotropy, axial diffusivity, pure anisotropic diffusion (q), total magnitude of diffusion tensor (L), relative anisotropy, Cp and spherical tensor (Cs) in solid nonenhancing tumor regions for affected WM tracts. In most cases of HGG, the WM tracts were not completely destroyed, but found intact inside the tumor. DISCUSSION Probabilistic fiber tracking revealed the existence and distribution of WM tracts inside tumor core for both LGG and HGG groups. There were more DTI indices in the solid nonenhancing tumor region, which showed significant differences between LGG and HGG.
Collapse
|
9
|
Martín-Noguerol T, Mohan S, Santos-Armentia E, Cabrera-Zubizarreta A, Luna A. Advanced MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions. Eur J Radiol 2021; 143:109900. [PMID: 34412007 DOI: 10.1016/j.ejrad.2021.109900] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
Evaluation of Central Nervous System (CNS) focal lesions has been classically made focusing on the assessment solid or enhancing component. However, the assessment of solitary peripherally enhancing lesions where the differential diagnosis includes High-Grade Gliomas (HGG) and metastasis, is usually challenging. Several studies have tried to address the characteristics of peritumoral non-enhancing areas, for better characterization of these lesions. Peritumoral hyperintense T2/FLAIR signal abnormality predominantly contains infiltrating tumor cells in HGG whereas CNS metastasis induce pure vasogenic edema. In addition, the accurate determination of the real extension of HGG is critical for treatment selection and outcome. Conventional MRI sequences are limited in distinguishing infiltrating neoplasm from vasogenic edema. Advanced MRI sequences like Diffusion Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), Perfusion Weighted Imaging (PWI) and MR spectroscopy (MRS) have all been utilized for this aim with acceptable results. Other advanced MRI approaches, less explored for this task such as Arterial Spin Labelling (ASL), Diffusion Kurtosis Imaging (DKI), T2 relaxometry or Amide Proton Transfer (APT) are also showning promising results in this scenario. In this article, we will discuss the physiopathological basis of peritumoral T2/FLAIR signal abnormality and review potential applications of advanced MRI sequences for its evaluation.
Collapse
Affiliation(s)
| | - Suyash Mohan
- Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain.
| |
Collapse
|
10
|
Romero-Garcia R, Suckling J, Owen M, Assem M, Sinha R, Coelho P, Woodberry E, Price SJ, Burke A, Santarius T, Erez Y, Hart MG. Memory recovery in relation to default mode network impairment and neurite density during brain tumor treatment. J Neurosurg 2021; 136:358-368. [PMID: 34359041 DOI: 10.3171/2021.1.jns203959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to test brain tumor interactions with brain networks, thereby identifying protective features and risk factors for memory recovery after resection. METHODS Seventeen patients with diffuse nonenhancing glioma (ages 22-56 years) underwent longitudinal MRI before and after surgery, and during a 12-month recovery period (47 MRI scans in total after exclusion). After each scanning session, a battery of memory tests was performed using a tablet-based screening tool, including free verbal memory, overall verbal memory, episodic memory, orientation, forward digit span, and backward digit span. Using structural MRI and neurite orientation dispersion and density imaging (NODDI) derived from diffusion-weighted images, the authors estimated lesion overlap and neurite density, respectively, with brain networks derived from normative data in healthy participants (somatomotor, dorsal attention, ventral attention, frontoparietal, and default mode network [DMN]). Linear mixed-effect models (LMMs) that regressed out the effect of age, gender, tumor grade, type of treatment, total lesion volume, and total neurite density were used to test the potential longitudinal associations between imaging markers and memory recovery. RESULTS Memory recovery was not significantly associated with either the tumor location based on traditional lobe classification or the type of treatment received by patients (i.e., surgery alone or surgery with adjuvant chemoradiotherapy). Nonlocal effects of tumors were evident on neurite density, which was reduced not only within the tumor but also beyond the tumor boundary. In contrast, high preoperative neurite density outside the tumor but within the DMN was associated with better memory recovery (LMM, p value after false discovery rate correction [Pfdr] < 10-3). Furthermore, postoperative and follow-up neurite density within the DMN and frontoparietal network were also associated with memory recovery (LMM, Pfdr = 0.014 and Pfdr = 0.001, respectively). Preoperative tumor and postoperative lesion overlap with the DMN showed a significant negative association with memory recovery (LMM, Pfdr = 0.002 and Pfdr < 10-4, respectively). CONCLUSIONS Imaging biomarkers of cognitive recovery and decline can be identified using NODDI and resting-state networks. Brain tumors and their corresponding treatment affecting brain networks that are fundamental for memory functioning such as the DMN can have a major impact on patients' memory recovery.
Collapse
Affiliation(s)
| | - John Suckling
- 1Department of Psychiatry, University of Cambridge.,2Behavioural and Clinical Neuroscience Institute, University of Cambridge.,3Cambridge and Peterborough NHS Foundation Trust, Cambridge
| | - Mallory Owen
- 1Department of Psychiatry, University of Cambridge
| | - Moataz Assem
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | | | | | - Emma Woodberry
- 7Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Stephen J Price
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| | - Amos Burke
- 8Department of Paediatric Haematology, Oncology, and Palliative Care, Addenbrooke's Hospital, Cambridge; and
| | - Thomas Santarius
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge.,9Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridgeshire, United Kingdom
| | - Yaara Erez
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | - Michael G Hart
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| |
Collapse
|
11
|
Samani ZR, Parker D, Wolf R, Hodges W, Brem S, Verma R. Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases. Sci Rep 2021; 11:14469. [PMID: 34262079 PMCID: PMC8280204 DOI: 10.1038/s41598-021-93804-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor types are classically distinguished based on biopsies of the tumor itself, as well as a radiological interpretation using diverse MRI modalities. In the current study, the overarching goal is to demonstrate that primary (glioblastomas) and secondary (brain metastases) malignancies can be differentiated based on the microstructure of the peritumoral region. This is achieved by exploiting the extracellular water differences between vasogenic edema and infiltrative tissue and training a convolutional neural network (CNN) on the Diffusion Tensor Imaging (DTI)-derived free water volume fraction. We obtained 85% accuracy in discriminating extracellular water differences between local patches in the peritumoral area of 66 glioblastomas and 40 metastatic patients in a cross-validation setting. On an independent test cohort consisting of 20 glioblastomas and 10 metastases, we got 93% accuracy in discriminating metastases from glioblastomas using majority voting on patches. This level of accuracy surpasses CNNs trained on other conventional DTI-based measures such as fractional anisotropy (FA) and mean diffusivity (MD), that have been used in other studies. Additionally, the CNN captures the peritumoral heterogeneity better than conventional texture features, including Gabor and radiomic features. Our results demonstrate that the extracellular water content of the peritumoral tissue, as captured by the free water volume fraction, is best able to characterize the differences between infiltrative and vasogenic peritumoral regions, paving the way for its use in classifying and benchmarking peritumoral tissue with varying degrees of infiltration.
Collapse
Affiliation(s)
- Zahra Riahi Samani
- Diffusion and Connectomics in Precision Healthcare Research Lab (DiCIPHR), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Parker
- Diffusion and Connectomics in Precision Healthcare Research Lab (DiCIPHR), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald Wolf
- Department of Radiology, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Wes Hodges
- Founder at Synaptive Medical, Toronto, ON, Canada
| | - Steven Brem
- Department of Radiology, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ragini Verma
- Diffusion and Connectomics in Precision Healthcare Research Lab (DiCIPHR), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
13
|
Kalakoti P, Edwards A, Ferrier C, Sharma K, Huynh T, Ledbetter C, Gonzalez-Toledo E, Nanda A, Sun H. Biomarkers of Seizure Activity in Patients With Intracranial Metastases and Gliomas: A Wide Range Study of Correlated Regions of Interest. Front Neurol 2020; 11:444. [PMID: 32547475 PMCID: PMC7273506 DOI: 10.3389/fneur.2020.00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/27/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction: Studies quantifying cortical metrics in brain tumor patients who present with seizures are limited. The current investigation assesses morphometric/volumetric differences across a wide range of anatomical regions, including temporal and extra-temporal, in patients with gliomas and intracranial metastases (IMs) presenting with seizures that could serve as a biomarker in the identification of seizure expression and serve as a neuronal target for mitigation. Methods: In a retrospective design, the MR sequences of ninety-two tumor patients [55% gliomas; 45% IM] and 34 controls were subjected to sophisticated morphometric and volumetric assessments using BrainSuite and MATLAB modules. We examined 103 regions of interests (ROIs) across eight distinct cortical categories of interests (COI) [gray matter, white matter; total volume, CSF; cortical areas: inner, mid, pial; cortical thickness]. The primary endpoint was quantifying and identifying ROIs with significant differences in z-scores based upon the presence of seizures. Feature selection employing neighborhood component analysis (NCA) determined the ROI within each COI having the highest significance/weight in the differentiation of seizure vs. non-seizure patients harboring brain tumor. Results: Overall, the mean age of the cohort was 58.0 ± 12.8 years, and 45% were women. The prevalence of seizures in tumor patients was 28%. Forty-two ROIs across the eight pre-defined COIs had significant differences in z-scores between tumor patients presenting with and without seizures. The NCA feature selection noted the volume of pars-orbitalis and right middle temporal gyrus to have the highest weight in differentiating tumor patients based on seizures for three distinct COIs [GM, total volume, and CSF volume] and white matter, respectively. Left-sided transverse temporal gyrus, left precuneus, left transverse temporal, and left supramarginal gyrus were associated with having the highest weight in the differentiation of seizure vs. non-seizure in tumor patients for morphometrics relating to cortical areas in the pial, inner and mid regions and cortical thickness, respectively. Conclusion: Our study elucidates potential biomarkers for seizure targeting in patients with gliomas and IMs based upon morphometric and volumetric assessments. Amongst the widespread brain regions examined in our cohort, pars orbitalis, supramarginal and temporal gyrus (middle, transverse), and the pre-cuneus contribute a maximal potential for differentiation of seizure patients from non-seizure.
Collapse
Affiliation(s)
- Piyush Kalakoti
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Alicia Edwards
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Christopher Ferrier
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Kanika Sharma
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Trong Huynh
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Neurosurgery, Rutgers University, Newark, NJ, United States
| | - Christina Ledbetter
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Eduardo Gonzalez-Toledo
- Neuroradiology, Department of Radiology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Anil Nanda
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Neurosurgery, Rutgers University, Newark, NJ, United States
| | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Neurosurgery, Rutgers University, Newark, NJ, United States
- *Correspondence: Hai Sun
| |
Collapse
|
14
|
Zhang P, Liu B. Differentiation among Glioblastomas, Primary Cerebral Lymphomas, and Solitary Brain Metastases Using Diffusion-Weighted Imaging and Diffusion Tensor Imaging: A PRISMA-Compliant Meta-analysis. ACS Chem Neurosci 2020; 11:477-483. [PMID: 31922391 DOI: 10.1021/acschemneuro.9b00698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies showed a high diagnostic value of diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) in differentiation among glioblastomas, primary cerebral lymphomas (PCLs), and solitary brain metastases, whereas other studies reported a low or no diagnostic value of DWI and DTI in differentiation among the three types of brain malignant tumors. In order to enhance the strength of evidence, meta-analysis was conducted to summarize results of studies evaluating the diagnostic values of DWI or DTI in differentiation among the three types of brain malignant tumors. Articles evaluating the diagnostic values of DWI or DTI in differentiation among the three types of tumors and published before December 2019 were searched in databases (PubMed, Medline, Web of Science, EMBASE, and Google Scholar). A summary of sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and diagnostic odds ratio (DOR) were calculated from the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) of each study using STATA 12.0 software and Meta-Disc Version 1.4. In addition, the summary receive-operating characteristic (SROC) curve was constructed. Ultimately, we included 19 diagnostic studies (including 735 glioblastomas patients, 31 PCLs patients, and 792 patients with solitary brain metastases). Regarding differentiation between glioblastomas and solitary brain metastases using DWI or DTI, the calculated pooled parameters were as follows: sensitivity, 0.84 [95% confidence interval (CI): 0.78-0.89]; specificity, 0.88 (95% CI: 0.83-0.92); PLR, 7.2 (95% CI: 4.6-11.3); NLR, 0.18 (95% CI: 0.12-0.27); and DOR, 41 (95% CI: 18-93). The analysis showed a significant heterogeneity (sensitivity, I2 = 91.31%, p < 0.01; specificity, I2 = 89.24%, p < 0.01). In conclusion, DWI and DTI showed a moderate diagnostic value for differentiating glioblastomas from solitary brain metastasis. Additionally, large-scale prospective studies are essential to explore differentiation between PCLs and solitary brain metastases using DWI or DTI.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
- Laboratory of Oncology, Fifth Medical Center, General Hospital of PLA, Beijing 100071, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
- Laboratory of Oncology, Fifth Medical Center, General Hospital of PLA, Beijing 100071, China
| |
Collapse
|
15
|
Fu M, Han F, Feng C, Chen T, Feng X. Based on arterial spin labeling helps to differentiate high-grade gliomas from brain solitary metastasis: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e15580. [PMID: 31083237 PMCID: PMC6531209 DOI: 10.1097/md.0000000000015580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND We first introduced this meta-analysis was to assess the accuracy of arterial spin labeling (ASL) in the differentiating high-grade gliomas (HGG) from brain solitary metastases (BSM). METHODS The PubMed, Web of Knowledge, and Cochrane Libraries and China National Knowledge Infrastructure databases were searched up to August 31, 2018. The pooled weighted sensitivity and specificity, summary receiver operating characteristic curve (SROC), sensitivity analysis, and threshold effect analysis were performed on Stata version 12.0 and Meta-Disc version 1.4. Deeks' funnel plot asymmetry test was performed to assess publication bias. RESULTS Of 5 eligible articles, of the 346 lesions from 346 patients, 274 were HGG, and 72 were BSM. The forest pooled sensitivity of 0.88 (95% confidence interval [CI]: 0.65, 0.96) and specificity of 0.85 (95% CI: 0.74, 0.92) of ASL were reported in this meta-analysis. The pooled area under the curve of SROC was 0.92 (95% CI: 0.89, 0.94). Sensitivity analysis demonstrated that the pooled estimates were reliable. No evident publication bias was obtained (P = .38). CONCLUSION The parameters derived from ASL with high accuracy in differentiating HGG from BSM. However, results must be interpreted with caution due to the small sample size considered. Large sample prospective studies were necessary to assess and confirm its clinical value.
Collapse
Affiliation(s)
- Min Fu
- Department of Radiology, The First Hospital of Qinhuangdao, Hebei
| | - Fang Han
- Department of Radiology, Affiliated Zhongshan Hospital of DaLian University, Dalian, Liaoning
| | - Changchao Feng
- Department of Radiology, The First Hospital of Qinhuangdao, Hebei
| | - Tao Chen
- Department of Radiology, Xiang Yang Central Hospital, Xiangyang, Hubei
| | - Xiaobo Feng
- Department of Ultrasound, Jin Zhong Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
16
|
Holly KS, Fitz-Gerald JS, Barker BJ, Murcia D, Daggett R, Ledbetter C, Gonzalez-Toledo E, Sun H. Differentiation of High-Grade Glioma and Intracranial Metastasis Using Volumetric Diffusion Tensor Imaging Tractography. World Neurosurg 2018; 120:e131-e141. [PMID: 30165214 DOI: 10.1016/j.wneu.2018.07.230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE A reliable, noninvasive method to differentiate high-grade glioma (HGG) and intracranial metastasis (IM) has remained elusive. The aim of this study was to differentiate between HGG and IM using tumoral and peritumoral diffusion tensor imaging characteristics. METHODS A semiautomated script generated volumetric regions of interest (ROIs) for the tumor and a peritumoral shell at a predetermined voxel thickness. ROI differences in diffusion tensor imaging-related metrics between HGG and IM groups were estimated, including fractional anisotropy, mean diffusivity, total fiber tract counts, and tract density. RESULTS The HGG group (n = 46) had a significantly higher tumor-to-brain volume ratio than the IM group (n = 35) (P < 0.001). The HGG group exhibited significantly higher mean fractional anisotropy and significantly lower mean diffusivity within peritumoral ROI than the IM group (P < 0.05). The HGG group exhibited significantly higher total tract count and higher tract density in tumoral and peritumoral ROIs than the IM group (P < 0.05). Tumoral tract count and peritumoral tract density were the most optimal metrics to differentiate the groups based on receiver operating characteristic curve analysis. Predictive analysis using receiver operating characteristic curve thresholds was performed on 13 additional participants. Compared with correct clinical diagnoses, the 2 thresholds exhibited equal specificities (66.7%), but the tumoral tract count (85.7%) seemed more sensitive in differentiating the 2 groups. CONCLUSIONS Tract count and tract density were significantly different in tumoral and peritumoral regions between HGG and IM. Differences in microenvironmental interactions between the tumor types may cause these tract differences.
Collapse
Affiliation(s)
- Kevin S Holly
- Department of Neurosurgery, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Joseph S Fitz-Gerald
- Department of Neurosurgery, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Benjamin J Barker
- Department of Neurosurgery, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Derrick Murcia
- Department of Neurosurgery, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Rebekah Daggett
- Department of Neurosurgery, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Christina Ledbetter
- Department of Neurosurgery, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Eduardo Gonzalez-Toledo
- Department of Radiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Hai Sun
- Department of Neurosurgery, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA.
| |
Collapse
|
17
|
Suh CH, Kim HS, Jung SC, Kim SJ. Diffusion-Weighted Imaging and Diffusion Tensor Imaging for Differentiating High-Grade Glioma from Solitary Brain Metastasis: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol 2018; 39:1208-1214. [PMID: 29724766 DOI: 10.3174/ajnr.a5650] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accurate diagnosis of high-grade glioma and solitary brain metastasis is clinically important because it affects the patient's outcome and alters patient management. PURPOSE To evaluate the diagnostic performance of DWI and DTI for differentiating high-grade glioma from solitary brain metastasis. DATA SOURCES A literature search of Ovid MEDLINE and EMBASE was conducted up to November 10, 2017. STUDY SELECTION Studies evaluating the diagnostic performance of DWI and DTI for differentiating high-grade glioma from solitary brain metastasis were selected. DATA ANALYSIS Summary sensitivity and specificity were established by hierarchic logistic regression modeling. Multiple subgroup analyses were also performed. DATA SYNTHESIS Fourteen studies with 1143 patients were included. The individual sensitivities and specificities of the 14 included studies showed a wide variation, ranging from 46.2% to 96.0% for sensitivity and 40.0% to 100.0% for specificity. The pooled sensitivity of both DWI and DTI was 79.8% (95% CI, 70.9%-86.4%), and the pooled specificity was 80.9% (95% CI, 75.1%-85.5%). The area under the hierarchical summary receiver operating characteristic curve was 0.87 (95% CI, 0.84-0.89). The multiple subgroup analyses also demonstrated similar diagnostic performances (sensitivities of 76.8%-84.7% and specificities of 79.7%-84.0%). There was some level of heterogeneity across the included studies (I2 = 36%); however, it did not reach a level of concern. LIMITATIONS The included studies used various DWI and DTI parameters. CONCLUSIONS DWI and DTI demonstrated a moderate diagnostic performance for differentiation of high-grade glioma from solitary brain metastasis.
Collapse
Affiliation(s)
- C H Suh
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - H S Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - S C Jung
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - S J Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
18
|
The relationship between fractional anisotropy value and tumor microarchitecture in late-stage rat glioma. ASIAN PAC J TROP MED 2017; 10:607-611. [DOI: 10.1016/j.apjtm.2017.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 11/19/2022] Open
|