1
|
Efendiev K, Alekseeva P, Skobeltsin A, Shiryaev A, Pisareva T, Akhilgova F, Mamedova A, Reshetov I, Loschenov V. Combined use of 5-ALA-induced protoporphyrin IX and chlorin e6 for fluorescence diagnostics and photodynamic therapy of skin tumors. Lasers Med Sci 2024; 39:266. [PMID: 39477891 DOI: 10.1007/s10103-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025]
Abstract
Different types of photosensitizers (PSs) have different dynamics and intensities of accumulation, depending on the type of tumor or different areas within the same tumor. This determines the effectiveness of fluorescence diagnostics and photodynamic therapy (PDT). This paper studies the processes of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) and chlorin e6 (Ce6) accumulation in the central and border zones of a tumor after combined administration of two PSs into the patient's body. Fluorescence diagnostic methods have shown that sublingual administration of 5-ALA leads to the more intense accumulation of PpIX in a tumor compared to oral administration. Differences have been identified in the dynamics of 5-ALA-induced PpIX and Ce6 accumulation in the central and border zones of the tumor, as well as normal tissues. Ce6 accumulates mainly in the central zone of the tumor while PpIX accumulates in the border zone of the tumor. All patients with combined PDT experienced complete therapeutic pathomorphosis and relapse-free observation.
Collapse
Affiliation(s)
- Kanamat Efendiev
- Prokhorov General Physics Institute, Moscow, Russian Federation.
- Moscow Engineering Physics Institute, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | - Victor Loschenov
- Prokhorov General Physics Institute, Moscow, Russian Federation
- Moscow Engineering Physics Institute, Moscow, Russian Federation
| |
Collapse
|
2
|
Kohzuki H, Miki S, Sugii N, Tsurubuchi T, Zaboronok A, Matsuda M, Ishikawa E. The Safety of Intraoperative Photodynamic Diagnosis Using 5-Aminolevulinic Acid Combined with Talaporfin Sodium Photodynamic Therapy in Recurrent High-Grade Glioma. World Neurosurg 2024; 190:e716-e720. [PMID: 39116940 DOI: 10.1016/j.wneu.2024.07.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Intraoperative photodynamic diagnosis (PDD) using 5-aminolevulinic acid (5-ALA) is a widely adopted technique to enhance the extent of resection during high-grade glioma (HGG) surgery. Recent updates to the package insert for 5-ALA in Japan now allow its use in combination with drugs that may induce photosensitivity, such as talaporfin sodium (TS). TS is employed in intraoperative photodynamic therapy (PDT) and has been shown to improve overall survival. The combination of 5-ALA with TS is expected to offer further benefits. However, the safety of this combination had not been established. This study reports on the safety of 5-ALA-PDD with TS-PDT in the treatment of recurrent HGG. METHODS 7 patients with recurrent HGG underwent tumor resection using a combination of 5-ALA-PDD and TS-PDT. The incidence of photosensitivity as an adverse effect associated with 5-ALA and TS was evaluated as described in the package insert. Adverse events were assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. RESULTS Tumor-specific fluorescence intensity was strong in 4 cases and weak in 3. Photosensitivity occurred in only 1 patient (14.3%). Three patients exhibited CTCAE grade 1 or 2 abnormal liver function, and 1 patient experienced CTCAE grade 1 γ-GTP elevation. All abnormalities improved during follow-up. CONCLUSIONS The combined use of 5-ALA-PDD and TS-PDT for HGG surgery did not increase the risk of serious adverse events in our study. Further investigations with a larger number of cases are needed for a more accurate assessment of its safety and efficacy.
Collapse
Affiliation(s)
- Hidehiro Kohzuki
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shunichiro Miki
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Narushi Sugii
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alexander Zaboronok
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
3
|
Cesca BA, Caverzan MD, Lamberti MJ, Ibarra LE. Enhancing Therapeutic Approaches in Glioblastoma with Pro-Oxidant Treatments and Synergistic Combinations: In Vitro Experience of Doxorubicin and Photodynamic Therapy. Int J Mol Sci 2024; 25:7525. [PMID: 39062770 PMCID: PMC11277534 DOI: 10.3390/ijms25147525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer characterized by significant molecular and cellular heterogeneity, which complicates treatment efforts. Current standard therapies, including surgical resection, radiation, and temozolomide (TMZ) chemotherapy, often fail to achieve long-term remission due to tumor recurrence and resistance. A pro-oxidant environment is involved in glioma progression, with oxidative stress contributing to the genetic instability that leads to gliomagenesis. Evaluating pro-oxidant therapies in brain tumors is crucial due to their potential to selectively target and eradicate cancer cells by exploiting the elevated oxidative stress levels inherent in these malignant cells, thereby offering a novel and effective strategy for overcoming resistance to conventional therapies. This study investigates the therapeutic potential of doxorubicin (DOX) and photodynamic therapy (PDT) with Me-ALA, focusing on their effects on redox homeostasis. Basal ROS levels and antioxidant gene expression (NFE2L2, CAT, GSR) were quantitatively assessed across GBM cell lines, revealing significant variability probably linked to genetic differences. DOX and PDT treatments, both individually and in combination, were analyzed for their efficacy in inducing oxidative stress and cytotoxicity. An in silico analysis further explored the relationship between gene mutations and oxidative stress in GBM patients, providing insights into the molecular mechanisms underlying treatment responses. Our findings suggest that pro-oxidant therapies, such as DOX and PDT in combination, could selectively target GBM cells, highlighting a promising avenue for improving therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Bruno Agustín Cesca
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
| | - Matías Daniel Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina;
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - María Julia Lamberti
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| |
Collapse
|
4
|
Burloiu AM, Manda G, Lupuliasa D, Socoteanu RP, Mihai DP, Neagoe IV, Anghelache LI, Surcel M, Anastasescu M, Olariu L, Gîrd CE, Barbuceanu SF, Ferreira LFV, Boscencu R. Assessment of Some Unsymmetrical Porphyrins as Promising Molecules for Photodynamic Therapy of Cutaneous Disorders. Pharmaceuticals (Basel) 2023; 17:62. [PMID: 38256895 PMCID: PMC10818616 DOI: 10.3390/ph17010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
In order to select for further development novel photosensitizers for photodynamic therapy in cutaneous disorders, three unsymmetrical porphyrins, namely 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2), 5-(2-hydroxy-5-methoxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl) porphyrin (P3.2), and 5-(2,4-dihydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P4.2), along with their fully symmetrical counterparts 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1) and 5,10,15,20-tetrakis-(4-carboxymethylphenyl) porphyrin (P3.1) were comparatively evaluated. The absorption and fluorescence properties, as well as atomic force microscopy measurements were performed to evaluate the photophysical characteristics as well as morphological and textural properties of the mentioned porphyrins. The cellular uptake of compounds and the effect of photodynamic therapy on the viability, proliferation, and necrosis of human HaCaT keratinocytes, human Hs27 skin fibroblasts, human skin SCL II squamous cell carcinoma, and B16F10 melanoma cells were assessed in vitro, in correlation with the structural and photophysical properties of the investigated porphyrins, and with the predictions regarding diffusion through cell membranes and ADMET properties. All samples were found to be isotropic and self-similar, with slightly different degrees of aggregability, had a relatively low predicted toxicity (class V), and a predicted long half-life after systemic administration. The in vitro study performed on non-malignant and malignant skin-relevant cells highlighted that the asymmetric P2.2 porphyrin qualified among the five investigated porphyrins to be a promising photosensitizer candidate for PDT in skin disorders. P2.2 was shown to accumulate well within cells, and induced by PDT a massive decrease in the number of metabolically active skin cells, partly due to cell death by necrosis. P2.2 had in this respect a better behavior than the symmetric P.2.1 compound and the related asymmetric compound P4.2. The strong action of P2.2-mediated PDT on normal skin cells might be an important drawback for further development of this compound. Meanwhile, the P3.1 and P3.2 compounds were not able to accumulate well in skin cells, and did not elicit significant PDT in vitro. Taken together, our experiments suggest that P2.2 can be a promising candidate for the development of novel photosensitizers for PDT in skin disorders.
Collapse
Affiliation(s)
- Andreea Mihaela Burloiu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Gina Manda
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania; (I.V.N.); (L.-I.A.); (M.S.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Radu Petre Socoteanu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania; (R.P.S.); (M.A.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Ionela Victoria Neagoe
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania; (I.V.N.); (L.-I.A.); (M.S.)
| | | | - Mihaela Surcel
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania; (I.V.N.); (L.-I.A.); (M.S.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania; (R.P.S.); (M.A.)
| | - Laura Olariu
- “SC. Biotehnos SA”, 3-5 Gorunului St., 075100 Bucharest, Romania;
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Stefania Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| | - Luis Filipe Vieira Ferreira
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania; (A.M.B.); (D.L.); (D.P.M.); (C.E.G.); (S.F.B.)
| |
Collapse
|
5
|
Pevná V, Huntošová V. Imaging of heterogeneity in 3D spheroids of U87MG glioblastoma cells and its implications for photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103821. [PMID: 37778715 DOI: 10.1016/j.pdpdt.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND In recent years, pharmacology and toxicology have emphasised the intention to move from in vivo models to simplified 3D objects represented by spheroidal models of cancer. Mitochondria are one of the subcellular organelles responsible for cell metabolism and are often a lucrative target for cancer treatment including photodynamic therapy (PDT). METHODS Hanging droplet-grown glioblastoma cells were forced to form spheroids with heterogeneous environments that were characterised by fluorescence microscopy and flow cytometry using fluorescent probes sensitive to oxidative stress and apoptosis. PDT was induced with hypericin at 590 nm. RESULTS It was found that the metabolic activity of the cells in the periphery and core of the spheroid was different. Higher oxidative stress and induction of caspase-3 were observed in the peripheral layers after PDT. These parts were more destabilised and showed higher expression of LC3B, an autophagic marker. However, the response of the whole system to the treatment was controlled by the cells in the core of the spheroids, which were hardly affected by the treatment. It has been shown that the depth of penetration of hypericin into this system is an important limiting step for PDT and the induction of autophagy and apoptosis. CONCLUSIONS In this work, we have described the fluorescence imaging of vital mitochondria, caspase-3 production and immunostaining of autophagic LC3B in cells from glioblastoma spheroids before and after PDT. Overall, we can conclude that this model represents an in vitro and in vivo applicable alternative for the study of PDT in solid microtumours.
Collapse
Affiliation(s)
- Viktória Pevná
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia; Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia.
| |
Collapse
|
6
|
Domka W, Bartusik-Aebisher D, Rudy I, Dynarowicz K, Pięta K, Aebisher D. Photodynamic therapy in brain cancer: mechanisms, clinical and preclinical studies and therapeutic challenges. Front Chem 2023; 11:1250621. [PMID: 38075490 PMCID: PMC10704472 DOI: 10.3389/fchem.2023.1250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 09/13/2024] Open
Abstract
Cancer is a main cause of death and preferred methods of therapy depend on the type of tumor and its location. Gliomas are the most common primary intracranial tumor, accounting for 81% of malignant brain tumors. Although relatively rare, they cause significant mortality. Traditional methods include surgery, radiotherapy and chemotherapy; they also have significant associated side effects that cause difficulties related to tumor excision and recurrence. Photodynamic therapy has potentially fewer side effects, less toxicity, and is a more selective treatment, and is thus attracting increasing interest as an advanced therapeutic strategy. Photodynamic treatment of malignant glioma is considered to be a promising additional therapeutic option that is currently being extensively investigated in vitro and in vivo. This review describes the application of photodynamic therapy for treatment of brain cancer. The mechanism of photodynamic action is also described in this work as it applies to treatment of brain cancers such as glioblastoma multiforme. The pros and cons of photodynamic therapy for brain cancer are also discussed.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Izabela Rudy
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Karolina Pięta
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
7
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Watts C, Dayimu A, Matys T, Ashkan K, Price S, Jenkinson MD, Doughton G, Mather C, Young G, Qian W, Kurian KM. Refining the Intraoperative Identification of Suspected High-Grade Glioma Using a Surgical Fluorescence Biomarker: GALA BIDD Study Report. J Pers Med 2023; 13:514. [PMID: 36983696 PMCID: PMC10058333 DOI: 10.3390/jpm13030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Improving intraoperative accuracy with a validated surgical biomarker is important because identifying high-grade areas within a glioma will aid neurosurgical decision-making and sampling. METHODS We designed a multicentre, prospective surgical cohort study (GALA-BIDD) to validate the presence of visible fluorescence as a pragmatic intraoperative surgical biomarker of suspected high-grade disease within a tumour mass in patients undergoing 5-aminolevulinic acid (5-ALA) fluorescence-guided cytoreductive surgery. RESULTS A total of 106 patients with a suspected high-grade glioma or malignant transformation of a low-grade glioma were enrolled. Among the 99 patients who received 5-ALA, 89 patients were eligible to assess the correlation of fluorescence with diagnosis as per protocol. Of these 89, 81 patients had visible fluorescence at surgery, and 8 patients had no fluorescence. A total of 80 out of 81 fluorescent patients were diagnosed as high-grade gliomas on postoperative central review with 1 low-grade glioma case. Among the eight patients given 5-ALA who did not show any visible fluorescence, none were high-grade gliomas, and all were low-grade gliomas. Of the seven patients suspected radiologically of malignant transformation of low-grade gliomas and with visible fluorescence at surgery, six were diagnosed with high-grade gliomas, and one had no tissue collected. CONCLUSION In patients where there is clinical suspicion, visible 5-ALA fluorescence has clinical utility as an intraoperative surgical biomarker of high-grade gliomas and can aid surgical decision-making and sampling. Further studies assessing the use of 5-ALA to assess malignant transformation in all diffuse gliomas may be valuable.
Collapse
Affiliation(s)
- Colin Watts
- Academic Department of Neurosurgery Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alimu Dayimu
- Clinical Trials Unit, Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital, London SE5 9RS, UK
| | - Stephen Price
- Academic Neurosurgery Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Michael D. Jenkinson
- Department of Neurosurgery, Walton Centre, University of Liverpool, Liverpool L9 7LJ, UK
| | - Gail Doughton
- Cambridge Clinical Trials Unit—Cancer Theme (CCTU-CT), Cambridge CB2 0QQ, UK
| | - Claire Mather
- Cambridge Clinical Trials Unit—Cancer Theme (CCTU-CT), Cambridge CB2 0QQ, UK
| | - Gemma Young
- Cambridge Clinical Trials Unit—Cancer Theme (CCTU-CT), Cambridge CB2 0QQ, UK
| | - Wendi Qian
- Cambridge Clinical Trials Unit—Cancer Theme (CCTU-CT), Cambridge CB2 0QQ, UK
| | - Kathreena M. Kurian
- Brain Tumour Research Centre, University of Bristol Medical School & North Bristol Trust, Bristol BS10 5NB, UK
| |
Collapse
|
9
|
Boscencu R, Radulea N, Manda G, Machado IF, Socoteanu RP, Lupuliasa D, Burloiu AM, Mihai DP, Ferreira LFV. Porphyrin Macrocycles: General Properties and Theranostic Potential. Molecules 2023; 28:molecules28031149. [PMID: 36770816 PMCID: PMC9919320 DOI: 10.3390/molecules28031149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Despite specialists' efforts to find the best solutions for cancer diagnosis and therapy, this pathology remains the biggest health threat in the world. Global statistics concerning deaths associated with cancer are alarming; therefore, it is necessary to intensify interdisciplinary research in order to identify efficient strategies for cancer diagnosis and therapy, by using new molecules with optimal therapeutic potential and minimal adverse effects. This review focuses on studies of porphyrin macrocycles with regard to their structural and spectral profiles relevant to their applicability in efficient cancer diagnosis and therapy. Furthermore, we present a critical overview of the main commercial formulations, followed by short descriptions of some strategies approached in the development of third-generation photosensitizers.
Collapse
Affiliation(s)
- Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Natalia Radulea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Gina Manda
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania
| | - Isabel Ferreira Machado
- Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Radu Petre Socoteanu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Andreea Mihaela Burloiu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Luis Filipe Vieira Ferreira
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| |
Collapse
|
10
|
First Clinical Report of the Intraoperative Macro- and Micro-Photodiagnosis and Photodynamic Therapy Using Talaporfin Sodium for a Patient with Disseminated Lumbar Medulloblastoma. J Clin Med 2023; 12:jcm12020432. [PMID: 36675360 PMCID: PMC9867022 DOI: 10.3390/jcm12020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Photodiagnosis (PD) and photodynamic therapy (PDT) using the second-generation photosensitizer talaporfin sodium together with an exciting laser for primary intracranial malignant tumors is well recognized in Japan, and many medical institutions are introducing this new therapeutic option. In particular, intraoperative PDT using talaporfin sodium for infiltrating tumor cells in the cavity walls after the resection of malignant glioma is now covered by health insurance after receiving governmental approvement, and this method has been recommended in therapeutic guidelines for primary malignant brain tumors in Japan. On the other hand, experimental and clinical studies on the development of novel therapeutic strategies for malignant spinal cord tumors have not been reported to date, although their histological features are almost identical to those of intracranial malignant tumors. Therefore, the clinical outcomes of malignant spinal cord tumors have been less favorable than those of malignant brain tumors. In this report, we performed the PD and PDT using talaporfin sodium on a patient with a metastatic lumbar lesion that was detected on magnetic resonance image (MRI) 50 months after the resection of cerebellar medulloblastoma who presented with lumbago and sciatica. We were able to detect the target lesion in the conus medullaris using a surgical microscope, and detected the disseminated medulloblastoma cells floating in the cerebrospinal fluid using a compact fluorescence microscope. Furthermore, we performed PDT to the resected lumbar lesion with the adjuvant platinum-based chemotherapy, and the patient survived a meaningful life for more than 2 years after the lumbar surgery. This report describes the first case of a human patient in whom the efficacy of PD and PDT was demonstrated for a malignant spinal cord tumor.
Collapse
|
11
|
Chiba K, Aihara Y, Oda Y, Fukui A, Tsuduki S, Saito T, Nitta M, Muragaki Y, Kawamata T. Photodynamic therapy for malignant brain tumors in children and young adolescents. Front Oncol 2022; 12:957267. [PMID: 36505805 PMCID: PMC9731766 DOI: 10.3389/fonc.2022.957267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Photodynamic therapy (PDT) targets tumor cell remnants after resection. Here, we evaluated the feasibility of PDT for malignant brain tumors in children and young adolescents. This was a single-center, non-randomized, phase I/II clinical study. The primary endpoints were the safety of treatment with talaporfin sodium (TS) (phase I) and overall survival (OS) after PDT (phase II). The secondary endpoint was progression-free survival (PFS) after PDT. The TS dose was determined by dose escalation from 10 to 20 to 40 mg/m2 for every three cases starting from the initial enrolled case. Eight patients with a mean age of 170.2 months (129-214 months) at the time of PDT received nine procedures with a mean follow-up duration of 16.8 months (1-42 months) after PDT. Histopathological diagnoses included supratentorial anaplastic ependymoma (n = 2), anaplastic astrocytoma (n = 1), diffuse midline glioma with H3K27M mutation (n = 1), glioblastoma (n = 3), and pediatric high-grade glioma (n = 1). The outcome was survival in five patients and death in three patients. Recurrence occurred in six of the eight patients; the remaining two were recurrence-free after PDT. Therefore, OS and PFS were calculated as 21 and 6 months, respectively. Seizures and fevers, which were likely surgery-related symptoms, were commonly observed. Photosensitive skin rashes or liver dysfunction, which are common adverse effects in adults, were not observed. Our results showed that TS can be used safely in children at doses comparable to those used in adults, as there was no major complication associated with TS administration. However, we cannot make a definitive conclusion about the efficacy of PDT because of the small number of participants. Accumulating cases was difficult because of the rarity of pediatric brain tumors and the difficulty in making a preoperative differential diagnosis, considering the wide range of histopathological findings. Moreover, the psychological stress associated with light-shielding management in pediatric patients was more severe than initially expected. In conclusion, TS at doses comparable to those used in adults may be safe for use in children and young adolescents between the ages of 6 and 20 years. However, further studies are needed to clarify its efficacy.
Collapse
Affiliation(s)
- Kentaro Chiba
- Department of Neurosurgery, Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| | - Yasuo Aihara
- Department of Neurosurgery, Tokyo Women’s Medical University (TWMU), Tokyo, Japan,*Correspondence: Yasuo Aihara,
| | - Yuichi Oda
- Department of Neurosurgery, Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| | - Shunsuke Tsuduki
- Department of Neurosurgery, Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| | - Taiichi Saito
- Department of Neurosurgery, Faculty of Advanced Techno-Surgery (FATS), Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Faculty of Advanced Techno-Surgery (FATS), Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women’s Medical University (TWMU), Tokyo, Japan
| |
Collapse
|
12
|
The Combined Use of 5-ALA and Chlorin e6 Photosensitizers for Fluorescence-Guided Resection and Photodynamic Therapy under Neurophysiological Control for Recurrent Glioblastoma in the Functional Motor Area after Ineffective Use of 5-ALA: Preliminary Results. Bioengineering (Basel) 2022; 9:bioengineering9030104. [PMID: 35324793 PMCID: PMC8945443 DOI: 10.3390/bioengineering9030104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of glial brain tumors is an unresolved problem in neurooncology, and all existing methods (tumor resection, chemotherapy, radiotherapy, radiosurgery, fluorescence diagnostics, photodynamic therapy, etc.) are directed toward increasing progression-free survival for patients. Fluorescence diagnostics and photodynamic therapy are promising methods for achieving gross total resection and additional treatment of residual parts of the tumor. However, sometimes the use of one photosensitizer for photodynamic therapy does not help, and the time until tumor relapse barely increases. This translational case report describes the preliminary results of the first combined use of 5-ALA and chlorin e6 photosensitizers for fluorescence-guided resection and photodynamic therapy of glioblastoma, which allowed us to perform total resection of tumor tissue according to magnetic resonance and computed tomography images, remove additional tissue with increased fluorescence intensity without neurophysiological consequences, and perform additional therapy. Two months after surgery, no recurrent tumor and no contrast uptake in the tumor bed were detected. Additionally, the patient had ischemic changes in the access zone and along the periphery and cystic-glial changes in the left parietal lobe.
Collapse
|
13
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
14
|
Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2021-10-4-35-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intraoperative fluorescence diagnostics of high-grade gliomas is widely used in neurosurgical practice. This work analyzes the possibilities of fluorescence diagnostics for low-grade gliomas (LGG) using chlorin e6 photosensitizer. The study included patients with newly diagnosed LGG, for whom chlorin e6 was used for intraoperative fluorescence control at a dose of 1 mg/kg. During the operation, the fluorescence intensity of various areas of the putative tumor tissue was analyzed using the RSS Cam – Endo 1.4.313 software. Tissue samples with various degrees of fluorescence intensity were compared with the results of their histopathological analysis (WHO tumor diagnosis, Ki-67 index, P53, VEGF). Fluorescence was detected in more than half of the cases, but in most cases had a focal character and low fluorescence intensity. The fluorescence intensity directly correlated with the data of histopathological examination of tumor tissues (Ki-67 index (p=0.002), expression of P53 (p=0.0015) and VEGF (p=0.001)). The sensitivity of the method for LGG surgery was 72%, the specificity was 56,7%. Intraoperative fluorescence diagnostics with chlorin e6 can be used in LGG surgery, especially to visualize intratumoral areas with a higher degree of anaplasia.
Collapse
|
15
|
Kozlikina EI, Efendiev KT, Grigoriev AY, Bogdanova OY, Trifonov IS, Krylov VV, Loschenov VB. A Pilot Study of Fluorescence-Guided Resection of Pituitary Adenomas with Chlorin e6 Photosensitizer. Bioengineering (Basel) 2022; 9:bioengineering9020052. [PMID: 35200407 PMCID: PMC8869665 DOI: 10.3390/bioengineering9020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Fluorescence diagnostics is one of the promising methods for intraoperative detection of brain tumor boundaries and helps in maximizing the extent of resection. This paper presents the results of a pilot study on the first use of the chlorin e6 photosensitizer and a two-channel video system for fluorescence-guided resection of pituitary adenomas. The study’s clinical part involved two patients diagnosed with hormonally inactive pituitary macroadenomas and one patient with a hormonally active one. All neoplasms had different sizes and growth patterns. The data showed accumulation of chlorin e6 in tumor tissues in high concentrations: Patient 1: 2 mg/kg, Patient 2: 5 mg/kg, and Patient 3: 4 mg/kg. For Patient 1, the residual part of the tumor was not resected since it was intimately attached to the anterior genu of the internal carotid artery. For Patients 2 and 3, no regions of increased Ce6 accumulation were detected in the tumor foci after resection. Therefore, the use of the Ce6 and a two-channel video system helped to achieve a high degree of tumor resection in each case.
Collapse
Affiliation(s)
- Elizaveta I. Kozlikina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Correspondence:
| | - Kanamat T. Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Andrey Yu. Grigoriev
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
- The National Medical Research Centre for Endocrinology, 117292 Moscow, Russia
| | - Olesia Y. Bogdanova
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Igor S. Trifonov
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Vladimir V. Krylov
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Victor B. Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
16
|
Rynda AY, Olyushin VE, Rostovtsev DM, Zabrodskaya YM, Papayan GV. [Comparative analysis of 5-ALA and chlorin E6 fluorescence-guided navigation in malignant glioma surgery]. Khirurgiia (Mosk) 2022:5-14. [PMID: 35080821 DOI: 10.17116/hirurgia20220115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To analyze specificity and sensitivity of 5-ALA and chlorin E6 fluorescence-guided navigation in malignant glioma surgery. MATERIAL AND METHODS Fluorescence-guided navigation was analyzed in 50 patients (2 groups) with high-grade glioma. All patients were treated at the Polenov Russian Neurosurgery Institute. Chlorin E6 1 mg/kg intravenously (Photoditazin) was used as a fluorescence inducer in 25 patients (the 1st group), 5-ALA 20 mg/kg orally (Alasens) - in other 25 patients (the 2nd group). Each group included 10 patients with glioma grade III and 15 patients with glioma grade IV. Both groups were statistically representative (p>0.05). RESULTS In patients with glioma grade III, sensitivity of chlorin E6 fluorescence-guided navigation was 83.8%, 5-ALA fluorescence - 82.5%. Specificity was 66.7% and 64.1%, respectively. In patients with glioma grade IV, sensitivity was 87.7% for chlorin E6 and 88.3% for 5-ALA. Specificity was 85.2% and 88.1%, respectively. CONCLUSION Statistical analysis confirmed comparable high efficacy of both agents in surgery of malignant gliomas. Sensitivity and specificity of fluorescence-guided navigation with chlorin E6 and 5-ALA were similar (p>0.05).
Collapse
Affiliation(s)
- A Yu Rynda
- Polenov Russian Neurosurgery Institute of the Branch of the Almazov National Medical Research Center, St. Petersburg, Russia
| | - V E Olyushin
- Polenov Russian Neurosurgery Institute of the Branch of the Almazov National Medical Research Center, St. Petersburg, Russia
| | - D M Rostovtsev
- Polenov Russian Neurosurgery Institute of the Branch of the Almazov National Medical Research Center, St. Petersburg, Russia
| | - Yu M Zabrodskaya
- Polenov Russian Neurosurgery Institute of the Branch of the Almazov National Medical Research Center, St. Petersburg, Russia
| | - G V Papayan
- Polenov Russian Neurosurgery Institute of the Branch of the Almazov National Medical Research Center, St. Petersburg, Russia
| |
Collapse
|
17
|
Akimoto J, Fukami S, Ichikawa M, Nagai K, Kohno M. Preliminary Report: Rapid Intraoperative Detection of Residual Glioma Cell in Resection Cavity Walls Using a Compact Fluorescence Microscope. J Clin Med 2021; 10:jcm10225375. [PMID: 34830662 PMCID: PMC8620805 DOI: 10.3390/jcm10225375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: The surgical eradication of malignant glioma cells is theoretically impossible. Therefore, reducing the number of remaining tumor cells around the brain–tumor interface (BTI) is crucial for achieving satisfactory clinical results. The usefulness of fluorescence–guided resection for the treatment of malignant glioma was recently reported, but the detection of infiltrating tumor cells in the BTI using a surgical microscope is not realistic. Therefore, we have developed an intraoperative rapid fluorescence cytology system, and exploratorily evaluated its clinical feasibility for the management of malignant glioma. Materials and methods: A total of 25 selected patients with malignant glioma (newly diagnosed: 17; recurrent: 8) underwent surgical resection under photodiagnosis using photosensitizer Talaporfin sodium and a semiconductor laser. Intraoperatively, a crush smear preparation was made from a tiny amount of tumor tissue, and the fluorescence emitted upon 620/660 nm excitation was evaluated rapidly using a compact fluorescence microscope in the operating theater. Results: Fluorescence intensities of tumor tissues measured using a surgical microscope correlated with the tumor cell densities of tissues evaluated by measuring the red fluorescence emitted from the cytoplasm of tumor cells using a fluorescence microscope. A “weak fluorescence” indicated a reduction in the tumor cell density, whereas “no fluorescence” did not indicate the complete eradication of the tumor cells, but indicated that few tumor cells were emitting fluorescence. Conclusion: The rapid intraoperative detection of fluorescence from glioma cells using a compact fluorescence microscope was probably useful to evaluate the presence of tumor cells in the resection cavity walls, and could provide surgical implications for the more complete resection of malignant gliomas.
Collapse
Affiliation(s)
- Jiro Akimoto
- Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo 153-0062, Japan
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
- Correspondence:
| | - Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| | - Megumi Ichikawa
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| | - Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, Tokyo 160-8402, Japan; (S.F.); (M.I.); (K.N.); (M.K.)
| |
Collapse
|
18
|
Lin MHC, Chang LC, Chung CY, Huang WC, Lee MH, Chen KT, Lai PS, Yang JT. Photochemical Internalization of Etoposide Using Dendrimer Nanospheres Loaded with Etoposide and Protoporphyrin IX on a Glioblastoma Cell Line. Pharmaceutics 2021; 13:pharmaceutics13111877. [PMID: 34834292 PMCID: PMC8621426 DOI: 10.3390/pharmaceutics13111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary neoplasm of the adult central nervous system originating from glial cells. The prognosis of those affected by GBM has remained poor despite advances in surgery, chemotherapy, and radiotherapy. Photochemical internalization (PCI) is a release mechanism of endocytosed therapeutics into the cytoplasm, which relies on the membrane disruptive effect of light-activated photosensitizers. In this study, phototherapy by PCI was performed on a human GBM cell-line using the topoisomerase II inhibitor etoposide (Etop) and the photosensitizer protoporphyrin IX (PpIX) loaded in nanospheres (Ns) made from generation-5 polyamidoamine dendrimers (PAMAM(G5)). The resultant formulation, Etop/PpIX-PAMAM(G5) Ns, measured 217.4 ± 2.9 nm in diameter and 40.5 ± 1.3 mV in charge. Confocal microscopy demonstrated PpIX fluorescence within the endo-lysosomal compartment, and an almost twofold increase in cellular uptake compared to free PpIX by flow cytometry. Phototherapy with 3 min and 5 min light illumination resulted in a greater extent of synergism than with co-administered Etop and PpIX; notably, antagonism was observed without light illumination. Mechanistically, significant increases in oxidative stress and apoptosis were observed with Etop/PpIX-PAMAM(G5) Ns upon 5 min of light illumination in comparison to treatment with either of the agents alone. In conclusion, simultaneous delivery and endo-lysosomal co-localization of Etop and PpIX by PAMAM(G5) Ns leads to a synergistic effect by phototherapy; in addition, the finding of antagonism without light illumination can be advantageous in lowering the dark toxicity and improving photo-selectivity.
Collapse
Affiliation(s)
- Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Wei-Chao Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Kuo-Tai Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-5-3621000 (ext. 3412); Fax: +886-5-3621000 (ext. 3002)
| |
Collapse
|
19
|
Rynda AY, Zabrodskaya YM, Olyushin VE, Rostovtsev DM, Sokolova TV, Papayan GV. [Morphological evaluation of the effectiveness of fluorescence navigation with chlorin e6 in surgery for malignant gliomas]. Arkh Patol 2021; 83:13-20. [PMID: 34609799 DOI: 10.17116/patol20218305113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of fluorescence navigation with chlorin e6 in surgery for malignant gliomas based on surgical material morphological and immunohistochemical data. MATERIAL AND METHODS The surgical material obtained from patients with high-grade (Grade III-IV) anaplastic glioma was examined. Along with histological examination, the proliferation marker Ki-67, the cell cycle transcription factor protein p53, and vascular endothelial growth factor (VEGF) were determined. RESULTS A significant direct correlation was found between the expression of Ki-67, p53, and VEGF and the fluorescence intensity of tumor tissues (p<0.05). CONCLUSION The technique of fluorescence navigation using chlorin e6 in comparative morphopathological analysis has confirmed its effectiveness in surgery for malignant gliomas.
Collapse
Affiliation(s)
- A Yu Rynda
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - Yu M Zabrodskaya
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - V E Olyushin
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - D M Rostovtsev
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - T V Sokolova
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - G V Papayan
- Prof. A.L. Polenov Russian Neurosurgical Institute - Branch V.A. Almazov National Medical Research Center of the Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
20
|
A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma. Lasers Med Sci 2021; 37:789-797. [PMID: 34581904 DOI: 10.1007/s10103-021-03426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Glioma is the most common primary central nervous system tumor; many methods are currently being used to research and treat glioma. In recent years, fluorescent-guided resection (FGR) and photodynamic therapy (PDT) have become hot spots in the treatment of glioma. Based on the existing literatures regarding the FGR enhancing resection rate and regarding efficacy of PDT for the treatment of glioma, this paper made a systematic review of FGR for gross total resection of patients and the PDT for the survival of patients with glioma. Meta-analysis of eligible studies was performed to derive precise estimation of PDT on the prognosis of patients with glioma by searching all related literatures in PubMed, EMBASE, Cochrane, and Web of Science databases, and further to evaluate (GTR) under FGR and the efficacy of PDT therapy, including 1-year and 2-year survival rates, overall survival (OS), and progression-free survival (PFS). According to the inclusion and exclusion criteria, a total of 1294 patients with glioma were included in the final analysis of 31 articles, among which a 73.00% (95% CI, 68.00 ~ 79.00%, P < 0.01) rate of GTR in 27 groups included in 23 articles was reported for those receiving FGR. The OS was 17.78 months (95% CI, 8.89 ~ 26.67, P < 0.01) in 5 articles on PDT-treated patients with glioma, and the mean difference of OS was 6.18 (95% CI, 3.3 ~ 9.06, P < 0.01) between PDT treatment and conventional glioma surgery, showing a statistically significant difference (P < 0.01). The PFS was 10.82 months (95% CI, 7.04 ~ 14.61, P < 0.01) in 5 articles on PDT-treated patients with glioma. A 1-year survival rate of 59.00% (95% CI, 38.00 ~ 77.00%, P < 0.01) in 10 groups included in 8 articles and 2-year survival rate of 25.00% (95% CI, 15.00 ~ 36.00%, P < 0.01) in 7 groups included in 6 articles were reported for those with PDT. FGR and PDT are feasible for treatment of patients with glioma, because FGR can effectively increase the resection rate, at the same time, PDT can prolong the survival time. However, due to the limitation of small sample size in the existing studies, larger samples and randomized controlled clinical trials are needed to analyze the resection under FGR and efficacy of PDT in patients with glioma.
Collapse
|
21
|
Rynda AY, Olyushin VE, Rostovtsev DM, Zabrodskaya YM, Tastanbekov MM, Papayan GV. [Intraoperative fluorescence control with chlorin E6 in resection of glial brain tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:20-28. [PMID: 34463447 DOI: 10.17116/neiro20218504120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, fluorescence navigation has been increasingly used in surgery for gliomas. In most studies, 5-ALA derivatives are used as fluorescence inducers. However, there are few data regarding E6 chlorin for these purposes. OBJECTIVE To evaluate an effectiveness and feasibility of fluorescence navigation with chlorin E6 in surgery of brain gliomas. MATERIAL AND METHODS The study included 30 patients with glial brain tumors grade II-IV. All patients were operated at the Polenov Russian Neurosurgical Institute. We used surgical microscope (Leica OHS-1), D-Light AF System (Karl Storz, Germany), original fluorescence module (St. Petersburg LOMO, developed by G.V. Papayan) and special software RSS Cam - Endo 1.4.313 for visual analysis of fluorescence. Histological examination included hematoxylin-eosin staining of specimens and immunohistochemical studies. RESULTS Fluorescence was weak in all patients with Grade II gliomas and strong in almost all patients with Grade III-IV gliomas. Sensitivity of fluorescence diagnosis with chlorin E6 was 72.2% for Grade II gliomas, 83.8% for Grade III gliomas and 87.7% for Grade IV. Specificity of this method was 60% for Grade II gliomas, 66.7% for Grade III gliomas and 85.2% for Grade IV. CONCLUSION Certain method of fluorescence imaging ensured resection of glial brain tumors using chlorin E6. Intensity of tumor fluorescence correlated with glioma malignancy grade. These results indicate that chlorin E6 is an effective photosensitizer for intraoperative fluorescence diagnosis in surgery for glioma.
Collapse
Affiliation(s)
- A Yu Rynda
- Polenov Russian Neurosurgical Institute, St. Petersburg, Russia
| | - V E Olyushin
- Polenov Russian Neurosurgical Institute, St. Petersburg, Russia
| | - D M Rostovtsev
- Polenov Russian Neurosurgical Institute, St. Petersburg, Russia
| | | | - M M Tastanbekov
- Polenov Russian Neurosurgical Institute, St. Petersburg, Russia
| | - G V Papayan
- Polenov Russian Neurosurgical Institute, St. Petersburg, Russia
| |
Collapse
|
22
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Saito T, Tsukahara T, Suzuki T, Nojima I, Tadano H, Kawai N, Kubo T, Hirohashi Y, Kanaseki T, Torigoe T, Li L. Spatiotemporal metabolic dynamics of the photosensitizer talaporfin sodium in carcinoma and sarcoma. Cancer Sci 2020; 112:550-562. [PMID: 33190360 PMCID: PMC7894003 DOI: 10.1111/cas.14735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Photodynamic therapy (PDT) using the photosensitizer talaporfin sodium (talaporfin) is a new mode of treatment for cancer. However, the metabolic mechanism of talaporfin has not been clarified. Thus, we investigated the uptake, transportation, and elimination mechanisms of talaporfin in carcinoma and sarcoma. The results showed that talaporfin co‐localized in early endosomes and lysosomes. Talaporfin uptake was via clathrin‐ and caveolae‐dependent endocytosis and a high amount of intracellular ATP was essential. Inhibition of lysosomal enzymes maintained intracellular talaporfin levels. Inhibition of K‐Ras signaling reduced talaporfin uptake in carcinoma and sarcoma cell lines. Talaporfin was taken up by clathrin‐ and caveolae‐dependent endocytosis, translocated from early endosomes to lysosomes, and finally degraded by lysosomes. We also demonstrated that ATP is essential for the uptake of talaporfin and that activation of K‐Ras is involved as a regulatory mechanism. These results provide new insights into the metabolism of talaporfin in cancer cells for the enhancement of PDT for carcinoma and sarcoma.
Collapse
Affiliation(s)
- Takuma Saito
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Graduate School of Photonic Science, Chitose Institute for Science and Technology, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Iyori Nojima
- Division of Cell Bank, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Tadano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Division of Internal Medicine, Sapporo Self-Defense Forces Hospital, Sapporo, Japan
| | - Noriko Kawai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Liming Li
- Graduate School of Photonic Science, Chitose Institute for Science and Technology, Sapporo, Japan
| |
Collapse
|
24
|
Clinical application of the mirror irradiation technique in photodynamic therapy for malignant glioma. Photodiagnosis Photodyn Ther 2020; 31:101956. [PMID: 32818648 DOI: 10.1016/j.pdpdt.2020.101956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Intraoperative photodynamic therapy (PDT) using talaporfin sodium for malignant glioma is effective both in the experimental and in the clinical setting. Because the irradiation unit is fixed to the objective lens of the operating microscope, blind spots for irradiation exist. To overcome this problem, we developed a mirror reflecting system using a modified dental mirror. METHODS The developed mirror is made of stainless steel, has a mirror-polished surface, and is rhodium coated on 1 side, which is the reflecting surface. The reflection rate was measured using He-Ne laser irradiation. The reflection intensity was measured using a laser power meter when the incident angle to the mirror was changed to 60°, 45°, and 30°, and the reflectance was calculated by the direct received light intensity from the laser. After confirming the safety of the fundamental experiment, PDT was performed with this developed mirror on 9 patients with malignant glioma (4 with recurrence and 5 newly diagnosed). RESULTS The energy efficiency of the mirror was approximately 70 %, and apparent irregular reflection was not observed. Even during clinical use, apparent complications, such as irregular reflection, did not occur upon using the mirror in any of the patients. In all patients, recurrence did not occur in the site where mirror irradiation was performed, but in a deep site or a distant site to which sufficient laser irradiation did not reach. CONCLUSION PDT using our newly developed mirror involves few instrumental changes compared with the conventional irradiation method, and is effective, safe, and inexpensive.
Collapse
|
25
|
Using Light for Therapy of Glioblastoma Multiforme (GBM). Brain Sci 2020; 10:brainsci10020075. [PMID: 32024010 PMCID: PMC7071600 DOI: 10.3390/brainsci10020075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
: Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumour with extremely poor prognosis. The current standard of care for newly diagnosed GBM includes maximal surgical resection followed by radiotherapy and adjuvant chemotherapy. The introduction of this protocol has improved overall survival, however recurrence is essentially inevitable. The key reason for that is that the surgical treatment fails to eradicate GBM cells completely, and adjacent parenchyma remains infiltrated by scattered GBM cells which become the source of recurrence. This stimulates interest to any supplementary methods which could help to destroy residual GBM cells and fight the infiltration. Photodynamic therapy (PDT) relies on photo-toxic effects induced by specific molecules (photosensitisers) upon absorption of photons from a light source. Such toxic effects are not specific to a particular molecular fingerprint of GBM, but rather depend on selective accumulation of the photosensitiser inside tumour cells or, perhaps their greater sensitivity to the effects, triggered by light. This gives hope that it might be possible to preferentially damage infiltrating GBM cells within the areas which cannot be surgically removed and further improve the chances of survival if an efficient photosensitiser and hardware for light delivery into the brain tissue are developed. So far, clinical trials with PDT were performed with one specific type of photosensitiser, protoporphyrin IX, which tends to accumulate in the cytoplasm of the GBM cells. In this review we discuss the idea that other types of molecules which build up in mitochondria could be explored as photosensitisers and used for PDT of these aggressive brain tumours.
Collapse
|
26
|
Cramer SW, Chen CC. Photodynamic Therapy for the Treatment of Glioblastoma. Front Surg 2020; 6:81. [PMID: 32039232 PMCID: PMC6985206 DOI: 10.3389/fsurg.2019.00081] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common form of adult brain cancer and remains one of the deadliest of human cancers. The current standard-of-care involves maximal tumor resection followed by treatment with concurrent radiation therapy and the chemotherapy temozolomide. Recurrence after this therapy is nearly universal within 2 years of diagnosis. Notably, >80% of recurrence is found in the region adjacent to the resection cavity. The need for improved local control in this region, thus remains unmet. The FDA approval of 5-aminolevulinic acid (5-ALA) for fluorescence guided glioblastoma resection renewed interests in leveraging this agent as a means to administer photodynamic therapy (PDT). Here we review the general principles of PDT as well as the available literature on PDT as a glioblastoma therapeutic platform.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Valli D, Belykh E, Zhao X, Gandhi S, Cavallo C, Martirosyan NL, Nakaji P, Lawton MT, Preul MC. Development of a Simulation Model for Fluorescence-Guided Brain Tumor Surgery. Front Oncol 2019; 9:748. [PMID: 31475107 PMCID: PMC6706957 DOI: 10.3389/fonc.2019.00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Fluorescence dyes are increasingly used in brain tumor surgeries, and thus the development of simulation models is important for teaching neurosurgery trainees how to perform fluorescence-guided operations. We aimed to create a tumor model for fluorescence-guided surgery in high-grade glioma (HGG). Methods: The tumor model was generated by the following steps: creating a tumor gel with a similar consistency to HGG, selecting fluorophores at optimal concentrations with realistic color, mixing the fluorophores with tumor gel, injecting the gel into fresh pig/sheep brain, and testing resection of the tumor model under a fluorescence microscope. The optimal tumor gel was selected among different combinations of agar and gelatin. The fluorophores included fluorescein, indocyanine green (ICG), europium, chlorin e6 (Ce6), and protoporphyrin IX (PpIX). The tumor model was tested by neurosurgeons and neurosurgery trainees, and a survey was used to assess the validity of the model. In addition, the photobleaching phenomenon was studied to evaluate its influence on fluorescence detection. Results: The best tumor gel formula in terms of consistency and tactile response was created using 100 mL water at 100°C, 0.5 g of agar, and 3 g of gelatin mixed thoroughly for 3 min. An additional 1 g of agar was added when the tumor gel cooled to 50°C. The optimal fluorophore concentration ranges were fluorescein 1.9 × 10−4 to 3.8 × 10−4 mg/mL, ICG 4.9 × 10−3 to 9.8 × 10−3 mg/mL, europium 7.0 × 10−2 to 1.4 × 10−1 mg/mL, Ce6 2.2 × 10−3 to 4.4 × 10−3 mg/mL, and PpIX 1.8 × 10−2 to 3.5 × 10−2 mg/mL. No statistical differences among fluorophores were found for face validity, content validity, and fluorophore preference. Europium, ICG, and fluorescein were shown to be relatively stable during photobleaching experiments, while chlorin e6 and PpIX had lower stability. Conclusions: The model can efficiently highlight the “tumor” with 3 different colors—green, yellow, or infrared green with color overlay. These models showed high face and content validity, although there was no significant difference among the models regarding the degree of simulation and training effectiveness. They are useful educational tools for teaching the key concepts of intra-axial tumor resection techniques, such as subpial dissection and nuances of fluorescence-guided surgery.
Collapse
Affiliation(s)
- Daniel Valli
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | | | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|