1
|
Chen Y, Ullah A, Chen W, Xuan J, Huang X, Liang S, Shen B, Wu T. Cytokine modulation in pelvic organ prolapse and urinary incontinence: from molecular insights to therapeutic targets. Mol Med 2024; 30:214. [PMID: 39538179 PMCID: PMC11562709 DOI: 10.1186/s10020-024-00989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pelvic organ prolapse (POP) and urinary incontinence (UI) are common disorders that significantly impact women's quality of life. Studies have demonstrated that cytokines, including pro- and anti-inflammatory immune mediators, play a role in illness genesis and progression. Research on the inflammatory milieu of the pelvic floor has shown that POP patients have increased inflammation in vaginal tissues. This evidence revealed that significant changes in the inflammatory milieu of the pelvic floor are an aspect of the pathogenesis of POP. POP patients exhibit increased levels of inflammatory cytokines (IL-1, TNF, IFN, and others) in the front vaginal wall, which may alter collagen metabolism and contribute to POP. Studies indicate that cytokines such as IL-6, IL-10, and TGF, which are involved in inflammation, remodelling, and repair, have dual effects on POP and UI. They can promote tissue healing and regeneration but also exacerbate inflammation and fibrosis, contributing to the progression of these conditions. Understanding the dual roles of these cytokines could help us improve the vaginal microenvironment of women and treat POP and UI. Given the considerable changes in these cytokines, this review addresses studies published between 2000 and 2024 on the molecular mechanisms by which pro- and anti-inflammatory cytokines affect women with POP and UI. Furthermore, we explain novel therapeutic strategies for cytokine regulation, emphasizing the possibility of personalized treatments that address the underlying inflammatory milieu of the vagina in POP and UI patients. This thorough analysis aims to establish a foundation for future research and clinical applications, ultimately improving patient outcomes via designed cytokine-based therapies.
Collapse
Affiliation(s)
- Yongxiu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Weifang Chen
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianyan Xuan
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiaowen Huang
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shiqi Liang
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingfeng Wu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Naji M, Ansari E, Besharati S, Hajiabbas M, Mohammadi Torbati P, Asghari Vostikolaee MH, Hajinasrollah M, Sharifiaghdas F. Tissue-engineered sub-urethral sling with muscle-derived cells for urethral sphincter regeneration in an animal model of stress urinary incontinence. Urologia 2024; 91:834-841. [PMID: 39193822 DOI: 10.1177/03915603241276555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND Stress urinary incontinence (SUI) is a widespread condition affecting more than 200 million people worldwide. Common treatments for this condition include retropubic colposuspension, and pelvic sling methods, which use autologous grafts or synthetic materials to support the bladder neck and urethral sphincter. Although these treatments have a cure rate of over 80%, adverse effects and recurrence may still occur. Several studies have focused on the potential of cell therapy. Muscle-derived cells (MDCs) can be easily obtained from small biopsied striated muscular tissues and possess superior multi-lineage differentiation and self-renewal capacity. METHODS Based on the unique characteristics of MDCs and previous favorable results in muscle regeneration, we fabricated a chitosan-gelatin hydrogel sling loaded with MDCs in a rat model of SUI. Leak point pressure and histological indices regarding inflammation, muscular atrophy, and collagen density were assessed to compare the effectiveness of cell injection and cell-laden sling. RESULTS The level of LPP was significantly reduced in the MODEL group versus the control animals. The LPP level was considerably higher in CELL INJECTION, SLING, and CELL/SLING groups compared to the MODEL group but did not reach the significance threshold. The inflammation rate was significantly lower in the CELL/SLING group compared to the SLING group. CONCLUSION The CELL/SLING group showed less atrophy compared to the other experimental groups, indicating that the cells may have higher viability on SLING than through injection. This also suggests that in long-term studies, as the degradation rate of hydrogels increases, the function of cells will become more apparent.
Collapse
Affiliation(s)
- Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Ansari
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Besharati
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hajiabbas
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology, Faculty of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Asghari Vostikolaee
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzaneh Sharifiaghdas
- Urology and Nephrology Research Center, Department of Urology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Andersson KE, Williams K. Cellular regenerative therapy in stress urinary incontinence: new frontiers?-a narrative review. Transl Androl Urol 2024; 13:1709-1716. [PMID: 39280677 PMCID: PMC11399031 DOI: 10.21037/tau-22-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/10/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Even if treatment with stem cells has been shown to be safe and effective in many patients with stress urinary incontinence (SUI), there is still room for improvement using other regenerative medicine alternatives. Since the beneficial effects of stem cells are probably mediated by secretion of factors rather than by the cells themselves there is a good rationale for further exploring the therapeutic effects of the secretome and/or its components. However, homing factors such as stromal derived growth factor 1 (SDF-1; CXCL12), stimulation of stem cell growth and stem cell mobilization in vivo using low intensity shock wave therapy (Li-ESWT) or regenerative electrical stimulation (RES), are also promising approaches. Methods A literature search was performed based on PubMed, Scopus and Google Scholar. The search criteria included original basic science articles, systematic reviews and randomized control trials. All studies were published between 2000 and 2023. Selected, peer-reviewed studies were further analyzed to identify those of relevance. Keywords searched included: "female stress incontinence", "homing factors", "CXCL12", "secretome", "low intensity shockwave therapy" and "regenerative electrical stimulation". The peer-reviewed publications on the key word subjects that contained a novel addition to the existing body of literature were included. Key Content and Findings There is evidence from studies on non-human primates (NHPs) with experimental urinary sphincter injury that CXCL12 can restore sphincter structure and function. Studies with homing factors in human patients with SUI are still to be performed. A large number of clinical studies on the use of secretome or secretome products from mesenchymal stem cells (MSCs) on indications other than human SUI are already available. However, controlled clinical trials on patients with SUI, have to the best of our knowledge, not yet been performed. Also, RES has not been studied in patients with SUI. In contrast, there is clinical evidence that Li-ESWT may improve female SUI. Conclusions Treatment with homing factors, MSC secretome/secretome components, Li-ESWT and RES are promising frontiers in the treatment of human SUI caused by sphincter damage.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| | - Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Liu X, Li T, Zhang J, Lin X, Wang W, Fan X, Wang L. Mesenchymal stem cell-based therapy for female stress urinary incontinence. Front Cell Dev Biol 2023; 11:1007703. [PMID: 36711031 PMCID: PMC9880261 DOI: 10.3389/fcell.2023.1007703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Stress urinary incontinence (SUI) adversely affects the quality of life of patients, while the currently available surgical and non-surgical therapies are not effective in all patients. Application of mesenchymal stem cells (MSCs) for regaining the ability to control urination has attracted interest. Herein, we reviewed the literature and analyzed recent studies on MSC-based therapies for SUI, summarized recent treatment strategies and their underlying mechanisms of action, while assessing their safety, effectiveness, and prospects. In addition, we traced and sorted the root literature and, from an experimental design perspective, divided the obtained results into four categories namely single MSC type therapy for SUI, MSC-based combination therapy for SUI, treatment of SUI with the MSC secretome, and other factors influencing MSC therapy. Although evidence demonstrates that the treatment strategies are safe and effective, the underlying mechanisms of action remain nebulous, hence more clinical trials are warranted. Therefore, future studies should focus on designing clinical trials of MSC-based therapies to determine the indications for treatment, cell dosage, appropriate surgical strategies, and optimal cell sources, and develop clinically relevant animal models to elucidate the molecular mechanisms underlying stem cell therapies improvement of SUI.
Collapse
Affiliation(s)
- Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Xiaochun Liu,
| | - Tingting Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jia Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiling Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenzhen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaodong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lili Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,School of Biomedical Engineering at Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
6
|
Long Noncoding RNA SBF2-AS1 Promotes Abdominal Aortic Aneurysm Formation through the miRNA-520f-3p/SMARCD1 Axis. DISEASE MARKERS 2022; 2022:4782361. [PMID: 35968497 PMCID: PMC9374557 DOI: 10.1155/2022/4782361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular inflammatory disease. The regulatory mechanisms during AAA formation remain unclear. Bone marrow stem cells (BMSCs) are pluripotent cells capable of regulating the progression of various diseases by delivering exosomes and exosomal lncRNAs. In this study, we investigated its function in AAA by isolating BMSC exosome-derived lncRNA SBF2-AS1. The results showed that BF2-AS1 could be transferred to vascular smooth muscle cells (VSMCs) and human aortic VSMCs (HASMCs) via BMSC-derived exosomes. Depletion of SBF2-AS1 enhanced the cell viability and proliferation of VSMCs. Conversely, SBF2-AS1 knockdown inhibited VSMC apoptosis. Caspase-3 activity was inhibited by depletion of SBF2-AS1, whereas overexpression of SBF2-AS1 in VSMC promoted Caspase-3 activity. SBF2-AS1 enhances SMARCD1 expression by forming miR-520f-3p in VSMC and HASMC. Overexpression of SMARCD1 or miR-520f-3p inhibitor reversed cell viability and caspase-3 activity mediated by SBF2-AS1 depletion in VSMC and HASMC. Therefore, BMSC exosome-derived SBF2-AS1 promotes AAA formation through the miRNA-520f-3p/SMARCD1 axis. Targeting SBF2-AS1 could serve as a promising therapeutic strategy for AAA.
Collapse
|
7
|
Li A, Guo F, Pan Q, Chen S, Chen J, Liu HF, Pan Q. Mesenchymal Stem Cell Therapy: Hope for Patients With Systemic Lupus Erythematosus. Front Immunol 2021; 12:728190. [PMID: 34659214 PMCID: PMC8516390 DOI: 10.3389/fimmu.2021.728190] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Although previous studies have demonstrated that SLE is related to the imbalance of cells in the immune system, including B cells, T cells, and dendritic cells, etc., the mechanisms underlying SLE pathogenesis remain unclear. Therefore, effective and low side-effect therapies for SLE are lacking. Recently, mesenchymal stem cell (MSC) therapy for autoimmune diseases, particularly SLE, has gained increasing attention. This therapy can improve the signs and symptoms of refractory SLE by promoting the proliferation of Th2 and Treg cells and inhibiting the activity of Th1, Th17, and B cells, etc. However, MSC therapy is also reported ineffective in some patients with SLE, which may be related to MSC- or patient-derived factors. Therefore, the therapeutic effects of MSCs should be further confirmed. This review summarizes the status of MSC therapy in refractory SLE treatment and potential reasons for the ineffectiveness of MSC therapy from three perspectives. We propose various MSC modification methods that may be beneficial in enhancing the immunosuppression of MSCs in SLE. However, their safety and protective effects in patients with SLE still need to be confirmed by further experimental and clinical evidence.
Collapse
Affiliation(s)
- Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|