1
|
The Marginal Abatement Cost of Antimicrobials for Dairy Cow Mastitis: A Bioeconomic Optimization Perspective. Vet Sci 2023; 10:vetsci10020092. [PMID: 36851396 PMCID: PMC9962292 DOI: 10.3390/vetsci10020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Maintaining udder health is the primary indication for antimicrobial use (AMU) in dairy production, and modulating this application is a key factor in decreasing AMU. Defining the optimal AMU and the associated practical rules is challenging since AMU interacts with many parameters. To define the trade-offs between decreased AMU, labor and economic performance, the bioeconomic stochastic simulation model DairyHealthSim (DHS)© was applied to dairy cow mastitis management and coupled to a mean variance optimization model and marginal abatement cost curve (MACC) analysis. The scenarios included three antimicrobial (AM) treatment strategies at dry-off, five types of general barn hygiene practices, five milking practices focused on parlor hygiene levels and three milk withdrawal strategies. The first part of economic results showed similar economic performances for the blanked dry-off strategy and selective strategy but demonstrated the trade-off between AMU reduction and farmers' workload. The second part of the results demonstrated the optimal value of the animal level of exposure to AM (ALEA). The MACC analysis showed that reducing ALEA below 1.5 was associated with a EUR 10,000 loss per unit of ALEA on average for the farmer. The results call for more integrative farm decision processes and bioeconomic reasoning to prompt efficient public interventions.
Collapse
|
2
|
Mohsin MA, Yu H, He R, Wang P, Gan L, Du Y, Huang Y, Abro MB, Sohaib S, Pierzchala M, Sobiech P, Miętkiewska K, Pareek CS, He BX. Differentiation of Subclinical Ketosis and Liver Function Test Indices in Adipose Tissues Associated With Hyperketonemia in Postpartum Dairy Cattle. Front Vet Sci 2022; 8:796494. [PMID: 35187139 PMCID: PMC8850981 DOI: 10.3389/fvets.2021.796494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Past studies suggested that during early lactation and the transition period, higher plasma growth hormone (GH) levels in subclinical ketosis (SCK) might involve the initiation of body adipose tissues mobilization, resulting in metabolic disorders in ruminants particularly hyperketonemia. The upregulated GH mRNA expression in adipose tissue may take part in the adipolysis process in SCK-affected cows that paves a way for study further. This study aimed to characterize the plasma levels of GH, β-hydroxybutyrate acid (BHBA) and non-esterified fatty acid (NEFA) and glucose (GLu) in ketotic cows and healthy control (CON) cows; to measure the liver function test (LFT) indices in ketotic and healthy CON cows, and finally the quantitative real-time PCR (qRT-PCR) assay of candidate genes expressed in adipose tissues of ketotic and healthy CON cows during 0 to 7 week postpartum. Three experiments were conducted. Experiment-1 involved 21 Holstein cows weighing 500–600 kg with 2–5 parities. Results showed that GH, BHBA, and NEFA levels in ketotic cows were significantly higher and the GLu level significantly lower. Pearson's correlation analysis revealed a significant positive correlation of GH with BHBA, NEFA, and GLu in ketotic and healthy CON cows. In experiment-2, dynamic monitoring of LFT indices namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), total protein (TP), albumin (ALB), globulin (GLOB) and albumin/globulin (A/G) were examined. The TBIL, DBIL, and GGT indices were significantly higher in ketotic cows and TP was significantly lower. In experiment-3, mRNA expression levels of GHR and peroxisome-proliferator-activated receptor alpha (PPARα) genes in adipose tissue were significantly upregulated in ketotic cows. However, the mRNA expression of insulin-like growth factor-I (IGF-1), insulin-like growth factor-I receptor (IGF-1R), and sterol regulatory element-binding protein-1c (SREBP-1c) genes in adipose tissue were downregulated in ketotic cows. Our study concluded that during postpartum, higher plasma GH levels in SCK cows might involve the initiation of body adipose tissue mobilization, resulting in hyperketonemia.
Collapse
Affiliation(s)
- Muhammad Ali Mohsin
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiru Yu
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Animal Disease Prevention and Control Center, Shanghai, China
| | - Rongze He
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peng Wang
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linli Gan
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yulan Du
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Muhammad Bakhsh Abro
- Department of Veterinary Medicine, Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal, Pakistan
| | - Sarmad Sohaib
- Department of Veterinary Medicine, Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal, Pakistan
| | - Mariusz Pierzchala
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Przemysław Sobiech
- Internal Disease Unit, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Klaudia Miętkiewska
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Chandra S. Pareek
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bao Xiang He
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Bao Xiang He
| |
Collapse
|
3
|
Mammi LME, Guadagnini M, Mechor G, Cainzos JM, Fusaro I, Palmonari A, Formigoni A. The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review. Animals (Basel) 2021; 11:ani11071988. [PMID: 34359115 PMCID: PMC8300188 DOI: 10.3390/ani11071988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
Since the approval by the European Medicines Agency in 2013 of a monensin controlled-release capsule (CRC) for the prevention of ketosis in dairy cows, there has been widespread use across Europe. In recent decades, several papers have investigated the effects of monensin used as a CRC or as a feed additive to improve cattle energy metabolism and improve feed efficiency. Since the CRC is the only form of monensin permitted in Europe in dairy cows, the objective of this review was to report and summarize observations from the literature on the effects of this treatment in transition cows. The peer-reviewed literature published from 1997 was scanned, and papers written in English were evaluated for eligibility. Only papers evaluating the use of monensin in dairy cows for the prevention of ketosis during the transition period were reviewed. In total, 42 papers met the required criteria and were included in this review. The major findings focused on cow metabolism and health, rumen fermentation and milk production and quality. Overall, the review of the existing literature confirmed that monensin delivered as a CRC during the transition period has effects of different magnitude compared to other forms, doses or durations of administration. Studies agree on the antiketotic effects of this treatment, showing evidence of an increased propionate production in the rumen, reduced blood β-hydroxybutyrate, and improved liver function in treated cows, mainly resulting in reduced incidence of peripartum disease. On the contrary, the effects of CRC on ammonia production and rumen microflora are less robust than those reported for other forms. Of importance for the European market is the well-documented absence of any negative impact on milk and cheese production and composition using the CRC treatment.
Collapse
Affiliation(s)
- Ludovica M. E. Mammi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (A.P.); (A.F.)
- Correspondence: ; Tel.: +390512097015
| | | | - Gerald Mechor
- Elanco Animal Health, Innovation Way 2500, Greenfield, IN 46140, USA; (G.M.); (J.M.C.)
| | - Juan M. Cainzos
- Elanco Animal Health, Innovation Way 2500, Greenfield, IN 46140, USA; (G.M.); (J.M.C.)
| | - Isa Fusaro
- Faculty of Veterinary Medicine, University of Teramo, Località Piano D’Accio, 64100 Teramo, Italy;
| | - Alberto Palmonari
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (A.P.); (A.F.)
| | - Andrea Formigoni
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (A.P.); (A.F.)
| |
Collapse
|