1
|
Pozo P, Isla J, Asiain A, Navarro D, Gortázar C. Contribution of herd management, biosecurity, and environmental factors to the risk of bovine tuberculosis in a historically low prevalence region. Animal 2024; 18:101105. [PMID: 38417216 DOI: 10.1016/j.animal.2024.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Eradication of bovine tuberculosis (bTB) in certain historically low-prevalence regions remains elusive. A complete characterisation of the husbandry practices, biosecurity, and environment where farms are located is crucial to implement targeted in-farm risk mitigation protocols. Here, a detailed survey performed in 94 dairy cattle farms located in Navarra, a low-prevalence region of Spain between 2016 and 2020 was carried out. Data on 73 biosecurity, farm-, and environmental-level factors potentially associated with the risk of bTB occurrence were evaluated using an ordinal logistic regression model: farms were classified based on their prevalence index, a score linked to each farm to account for the severity and recurrence of bTB cases: 22.3% of the farms had a score of 1, 21.3% a score of 2, 26.6% a score of ≥ 3, and 29.8% were negative herds. A statistically significant association between a higher prevalence index and the frequency of badger sightings along with the lease of pastures to sheep during Winter was identified. Farms that detected badgers on a monthly to daily basis in the surroundings and those that leased pastures for sheep flocks during Winter were four [odds ratio, 95% CI (4.3; 1.1-17.5)] and three (3.1; 1.0-9.9) times more likely to have the highest prevalence index, respectively (predicted probabilityprevalence index≥3 = 0.7; 95% CI 0.3-0.9). Conversely, farms that used a vehicle to transport animals from holdings to pastures were less likely (0.1; <0.1-0.3) to present higher levels of prevalence index compared with farms that used none (on foot). Results suggested that the combined effect of farm- and environmental-level risk factors identified here may be hampering disease eradication in Navarra, highlighting the need to implement targeted protocols on farms and grazing plots. An increased awareness of monitoring sheep and wildlife in direct or indirect contact with cattle herds in historically low bTB prevalence areas should be raised.
Collapse
Affiliation(s)
- P Pozo
- Grupo SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC. CSIC-UCLM, 13071 Ciudad Real, Spain.
| | - J Isla
- Sabiotec. Edificio Polivalente UCLM, local 1.22, UCLM, 13005 Ciudad Real, Spain
| | - A Asiain
- Sección de Sanidad Animal. Departamento de Desarrollo Rural y Medio Ambiente. Gobierno de Navarra, 31002 Pamplona, Spain
| | - D Navarro
- Negociado de Epizootiología-Servicio de Ganadería. Departamento de Desarrollo Rural y Medio Ambiente. Gobierno de Navarra, 31002 Pamplona, Spain
| | - C Gortázar
- Grupo SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC. CSIC-UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
2
|
Tieri EE, Marino L, Zilli K, Pompilii C, Di Teodoro G, Cocco A, Ruberto A, Toro M, Mastrodomenico MT, Salucci S, De Massis F. Survey of Mycobacterium spp. in Eurasian Badgers ( Meles meles) in Central Italy. Animals (Basel) 2024; 14:219. [PMID: 38254387 PMCID: PMC10812667 DOI: 10.3390/ani14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
A survey to determine the presence of Mycobacterium spp. in the Abruzzo and Molise regions was conducted by testing samples from 124 badgers found dead or road-killed during the 2013-2021 period. Head lymph nodes were collected from all carcasses, as well as mediastinal lymph nodes from 20 of them, for bacteriological and molecular tests; tissues were inoculated onto a set of solid egg-based Lowenstein-Jensen media and in a liquid culture system (BACTEC) and were analyzed by polymerase chain reactions (PCRs). Organs and lymph nodes from 31 carcasses were collected for histological tests. During post-mortem examinations, macroscopic lesions consistent with a Mycobacterium tuberculosis complex (MTBC) and with nontuberculous mycobacteria (NTM) infections were not detected. Mycobacteria were isolated from four animals (3.22%). M. avium subsp. avium was isolated by head lymph nodes from two badgers (1.61%), M. avium subsp. paratuberculosis (0.80%) from one, and Mycobacterium spp. from another (0.80%). The significance of nontuberculous mycobacteria (NTM) in wildlife hosts in the absence of clinical signs and gross pathology has yet to be assessed. The most critical aspect came from isolates belonging to the Mycobacterium avium complex infection in wildlife due to the possible interference with tuberculin skin tests in cattle.
Collapse
Affiliation(s)
- Elga Ersilia Tieri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’ (IZS Teramo), Campo Boario, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rochard V, Cochard T, Crapart S, Delafont V, Moyen JL, Héchard Y, Biet F. Presence of Non-Tuberculous Mycobacteria Including Mycobacterium avium subsp. paratuberculosis Associated with Environmental Amoebae. Animals (Basel) 2023; 13:1781. [PMID: 37665671 PMCID: PMC10251955 DOI: 10.3390/ani13111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023] Open
Abstract
One of the obstacles to eradicating paratuberculosis or Johne's Disease (JD) seems to be the persistence of Mycobacterium avium subsp. paratuberculosis (Map) in the environment due to its ability to survive alone or vectorized. It has been shown that Map is widely distributed in soils and water. Previously, we isolated amoebae associated with Map strains in the environment of bovines from an infected herd. This work aims to verify our working hypothesis, which suggests that amoebae may play a role in the transmission of JD. In this study, we sampled water in the vicinity of herds infected with Map or Mycobacterium bovis (M. bovis) and searched for amoebae and mycobacteria. Live amoebae were recovered from all samples. Among these amoebae, four isolates associated with the presence of mycobacteria were identified and characterized. Map and other mycobacterial species were detected by qPCR and, in some cases, by culture. This study suggests that amoebae and Map may be found in the same environment and might represent a risk of exposure of animals to pathogenic mycobacteria. These data open up new perspectives on the control measures to be put in place to prevent contamination by Map.
Collapse
Affiliation(s)
- Vincent Rochard
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Thierry Cochard
- Institut National de Recherche pour l’Agriculture—INRAE, Université de Tours, ISP, F-37390 Nouzilly, France;
| | - Stéphanie Crapart
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Jean-Louis Moyen
- Laboratoire Départemental d’Analyse et de Recherche de la Dordogne, F-24660 Coulounieix-Chamiers, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions, UMR Centre National de la Recherche Scientifique 7267, Université de Poitiers, Equipe Microbiologie de l’Eau, F-86073 Poitiers, France (V.D.); (Y.H.)
| | - Franck Biet
- Institut National de Recherche pour l’Agriculture—INRAE, Université de Tours, ISP, F-37390 Nouzilly, France;
| |
Collapse
|
4
|
Can more information be extracted from bovine TB skin test outcomes to inform animal risk management? A retrospective observational animal-level study. Prev Vet Med 2022; 208:105761. [DOI: 10.1016/j.prevetmed.2022.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
|
5
|
Nunney E, Crotta M, van Winden S, Bond K, Green M, Guitian J. Effect of tuberculin skin testing on serological results against Mycobacterium avium ssp. paratuberculosis (MAP): Evidence of distinct effects in MAP-infected and noninfected cows. J Dairy Sci 2022; 105:8354-8363. [DOI: 10.3168/jds.2021-21753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/02/2022] [Indexed: 11/19/2022]
|
6
|
Kelly RF, Gonzaléz Gordon L, Egbe NF, Freeman EJ, Mazeri S, Ngwa VN, Tanya V, Sander M, Ndip L, Muwonge A, Morgan KL, Handel IG, Bronsvoort BMDC. Bovine Tuberculosis Epidemiology in Cameroon, Central Africa, Based on the Interferon-Gamma Assay. Front Vet Sci 2022; 9:877541. [PMID: 35937301 PMCID: PMC9353046 DOI: 10.3389/fvets.2022.877541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Despite sub-Saharan Africa (SSA) accounting for ~20% of the global cattle population, prevalence estimates and related risk factors of bovine tuberculosis (bTB) are still poorly described. The increased sensitivity of the IFN-γ assay and its practical benefits suggest the test could be useful to investigate bTB epidemiology in SSA. This study used a population-based sample to estimate bTB prevalence, identify risk factors and estimate the effective reproductive rate in Cameroonian cattle populations. A cross-sectional study was conducted in the North West Region (NWR) and the Vina Division (VIN) of Cameroon in 2013. A regional stratified sampling frame of pastoral cattle herds produced a sample of 1,448 cattle from 100 herds. In addition, a smaller cross-sectional study sampled 60 dairy cattle from 46 small-holder co-operative dairy farmers in the NWR. Collected blood samples were stimulated with bovine and avian purified protein derivatives, with extracted plasma screened using the IFN-γ enzyme-linked immunosorbent assay (Prionics Bovigam®). Design-adjusted population prevalences were estimated, and multivariable mixed-effects logistic regression models using Bayesian inference techniques identified the risk factors for IFN-γ positivity. Using the IFN-γ assay, the prevalence of bTB in the dairy cattle was 21.7% (95% CI: 11.2–32.2). The design-adjusted prevalence of bTB in cattle kept by pastoralists was 11.4% (95% CI: 7.6–17.0) in the NWR and 8.0% (95% CI: 4.7–13.0) in the VIN. A within-herd prevalence estimate for pastoralist cattle also supported that the NWR had higher prevalence herds than the VIN. Additionally, the estimates of the effective reproductive rate Rt were 1.12 for the NWR and 1.06 for the VIN, suggesting different transmission rates within regional cattle populations in Cameroon. For pastoral cattle, an increased risk of IFN-γ assay positivity was associated with being male (OR = 1.89; 95% CI:1.15–3.09), increasing herd size (OR = 1.02; 95% CI:1.01–1.03), exposure to the bovine leucosis virus (OR = 2.45; 95% CI: 1.19–4.84) and paratuberculosis (OR = 9.01; 95% CI: 4.17–20.08). Decreased odds were associated with contacts at grazing, buffalo (OR = 0.20; 95% CI: 0.03–0.97) and increased contact with other herds [1–5 herds: OR = 0.16 (95% CI: 0.04–0.55); 6+ herds: OR = 0.18 (95% CI: 0.05–0.64)]. Few studies have used the IFN-γ assay to describe bTB epidemiology in SSA. This study highlights the endemic situation of bTB in Cameroon and potential public health risks from dairy herds. Further work is needed to understand the IFN-γ assay performance, particularly in the presence of co-infections, and how this information can be used to develop control strategies in the SSA contexts.
Collapse
Affiliation(s)
- Robert F. Kelly
- Farm Animal Services, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Robert F. Kelly
| | - Lina Gonzaléz Gordon
- Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Nkongho F. Egbe
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Emily J. Freeman
- Farm Animal Services, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Stella Mazeri
- Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor N. Ngwa
- School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Melissa Sander
- Tuberculosis Reference Laboratory Bamenda, Hospital Roundabout, Bamenda, Cameroon
| | - Lucy Ndip
- Laboratory of Emerging Infectious Diseases, University of Buea, Buea, Cameroon
| | - Adrian Muwonge
- Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenton L. Morgan
- Institute of Ageing and Chronic Disease and School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Ian G. Handel
- Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Barend M. D. C. Bronsvoort
- Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG, Karrow NA. Johne's Disease in Dairy Cattle: An Immunogenetic Perspective. Front Vet Sci 2021; 8:718987. [PMID: 34513975 PMCID: PMC8426623 DOI: 10.3389/fvets.2021.718987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Didkowska A, Krajewska-Wędzina M, Klich D, Prolejko K, Orłowska B, Anusz K. The Risk of False-Positive Serological Results for Paratuberculosis in Mycobacterium bovis-Infected Cattle. Pathogens 2021; 10:pathogens10081054. [PMID: 34451518 PMCID: PMC8399313 DOI: 10.3390/pathogens10081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022] Open
Abstract
Both bovine tuberculosis (BTB) and paratuberculosis (paraTB) continue to cause significant economic losses in cattle breeding; in addition, their etiological agents have zoonotic potential. Although the diagnostics of both diseases are still being improved, problems still remain, such as the potential for cross-reactivity to the antigens used in tests. The aim of the present study was to confirm whether animals known to harbor Mycobacterium bovis antibodies are at increased risk of yielding positive results in paraTB serotesting and, additionally, to verify the accuracy of three commonly used methods for confirming M. bovis infection: ELISA, the tuberculin skin test (TST), and the presence of gross lesions. Material was collected from 98 dairy cattle suspected of BTB due to TST-positive results. During postmortem examination, gross lesions were assessed visually. Blood, lymph nodes, and TB-suspected organs were collected. Serum was obtained from the collected blood and tested serologically for TB and paraTB. The tissues underwent standard microbiological testing for M. tuberculosis complex. Among the 98 TST-positive individuals, tuberculous gross lesions were detected in 57 (58.1%), MTBC were isolated in 83 (84.7%), and the ELISA test was positive for 21 (21.4%). None of the lesions characteristic for paraTB were detected. The chance of obtaining a positive TB result by ELISA was seven times higher using the ELISA-paraTB method; hence, there is a significant risk of obtaining false-positive serological results for paraTB in M. bovis-infected cattle. However, the hypothesis that infection of M. bovis or prior TST performance may have boosted the host immune response and therefore increased the sensitivity of the paraTB-ELISA cannot be excluded.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
- Correspondence:
| | | | - Daniel Klich
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences (SGGW), 02-786 Warsaw, Poland;
| | - Kinga Prolejko
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
| | - Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
| |
Collapse
|
9
|
Hodgeman R, Mann R, Savin K, Djitro N, Rochfort S, Rodoni B. Molecular characterisation of Mycobacterium avium subsp. paratuberculosis in Australia. BMC Microbiol 2021; 21:101. [PMID: 33789575 PMCID: PMC8012159 DOI: 10.1186/s12866-021-02140-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium avium subsp. paratuberculosis (Map) causes Johne's disease (JD), a chronic enteritis widespread in ruminants, resulting in substantial economic losses, especially to the dairy industry. Understanding the genetic diversity of Map in Australia will assist epidemiological studies for tracking disease transmission and identify subtype characteristics for use in development of improved diagnostic typing methods. Here we investigated the phylogenetic relationships of 351 Map isolates and compared different subtyping methods to assess their suitability for use in diagnostics and accuracy. RESULTS SNP-based phylogenetic analysis of 228 Australian isolates and 123 publicly available international isolates grouped Type S and Type C strains into two distinct lineages. Type C strains were highly monomorphic with only 20 SNP differences separating them. Type S strains, when aligned separately to the Telford strain, fell into two distinct clades: The first clade contained seven international isolates while the second clade contained one international isolate from Scotland and all 59 Australian isolates. The Australian Type B strain clustered with US bison strains. IS1311 PCR and Restriction Enzyme Analysis (REA) intermittently generated incorrect results when compared to Long Sequence Polymorphism (LSP) analysis, whole genome SNP-based phylogenetic analysis, IS1311 sequence alignment and average nucleotide identity (ANI). These alternative methods generated consistent Map typing results. A published SNP based assay for genotyping Map was found to be unsuitable for differentiating between Australian and international strain types of Map. CONCLUSION This is the first phylogenetic analysis of Australian Map isolates. The Type C lineage was highly monomorphic, and the Type S lineage clustered all Australian isolates into one clade with a single Scottish sheep strain. The Australian isolate classified as Type B by IS1311 PCR and REA is likely to be descended from bison and most closely related to US bison strains. Limitations of the current typing methods were identified in this study.
Collapse
Affiliation(s)
- Rachel Hodgeman
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia. .,School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia.
| | - Rachel Mann
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Keith Savin
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Noel Djitro
- School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Simone Rochfort
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia.,School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia.,School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
10
|
Pozo P, Romero B, Bezos J, Grau A, Nacar J, Saez JL, Minguez O, Alvarez J. Evaluation of Risk Factors Associated With Herds With an Increased Duration of Bovine Tuberculosis Breakdowns in Castilla y Leon, Spain (2010-2017). Front Vet Sci 2020; 7:545328. [PMID: 33102565 PMCID: PMC7546324 DOI: 10.3389/fvets.2020.545328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The persistence of bovine tuberculosis (bTB) in certain cattle herds is a major concern in countries pursuing disease eradication worldwide. The chronic nature of the disease, the lack of performance of diagnostic tools, and the presence of wildlife reservoirs may lead infected herds to require longer periods to achieve the officially tuberculosis-free (OTF) status. Here, we evaluated the impact of farm and breakdown characteristics on the probability of disease persistence in infected farms in Castilla y Leon, a bTB-endemic region of Spain, using survival and logistic regression models. Data from bTB breakdowns occurring in 3,550 bTB-positive herds detected in 2010–2017 were analyzed. A multivariable Cox proportional hazards model was fitted using time to recover OTF status as the response variable, and a multivariable logistic regression model using the chronic status (yes/no) for herds experiencing particularly long breakdowns as the outcome variable was also used. Both analyses revealed that county-level bTB herd prevalence, herd size, number of incoming animals in the previous 3 years, number of skin test reactors in the disclosing test, and number of days between the disclosing and follow-up tests were associated with increased breakdown duration. Production type was not consistently associated with chronic infection, suggesting that once infected, it is not a significant predictor of outbreak duration beyond the initial stages of the breakdown. Province-level location and number of animals that are bacteriology-positive also affected significantly the expected herd breakdown duration, but their effect became less significant over time. Risk factors identified in this study may help to identify herds more prone to suffer chronic bTB infection that may require additional control measures early on in a breakdown.
Collapse
Affiliation(s)
- Pilar Pozo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,MAEVA SERVET, S.L., Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,MAEVA SERVET, S.L., Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Anna Grau
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Jesus Nacar
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Olga Minguez
- Dirección General de Producción Agropecuaria e Infraestructuras Agrarias, Consejería de Agricultura y Ganadería de la Junta de Castilla y León, Valladolid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Fielding HR, McKinley TJ, Delahay RJ, Silk MJ, McDonald RA. Characterization of potential superspreader farms for bovine tuberculosis: A review. Vet Med Sci 2020; 7:310-321. [PMID: 32937038 PMCID: PMC8025614 DOI: 10.1002/vms3.358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Accepted: 08/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Variation in host attributes that influence their contact rates and infectiousness can lead some individuals to make disproportionate contributions to the spread of infections. Understanding the roles of such ‘superspreaders’ can be crucial in deciding where to direct disease surveillance and controls to greatest effect. In the epidemiology of bovine tuberculosis (bTB) in Great Britain, it has been suggested that a minority of cattle farms or herds might make disproportionate contributions to the spread of Mycobacterium bovis, and hence might be considered ‘superspreader farms’. Objectives and Methods We review the literature to identify the characteristics of farms that have the potential to contribute to exceptional values in the three main components of the farm reproductive number ‐ Rf: contact rate, infectiousness and duration of infectiousness, and therefore might characterize potential superspreader farms for bovine tuberculosis in Great Britain. Results Farms exhibit marked heterogeneity in contact rates arising from between‐farm trading of cattle. A minority of farms act as trading hubs that greatly augment connections within cattle trading networks. Herd infectiousness might be increased by high within‐herd transmission or the presence of supershedding individuals, or infectiousness might be prolonged due to undetected infections or by repeated local transmission, via wildlife or fomites. Conclusions Targeting control methods on putative superspreader farms might yield disproportionate benefits in controlling endemic bovine tuberculosis in Great Britain. However, real‐time identification of any such farms, and integration of controls with industry practices, present analytical, operational and policy challenges.
Collapse
Affiliation(s)
- Helen R Fielding
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | | | - Richard J Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Stonehouse, Gloucestershire, UK
| | - Matthew J Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
12
|
Espinosa J, Fernández M, Royo M, Grau A, Ángel Collazos J, Benavides J, Del Carmen Ferreras M, Mínguez O, Pérez V. Influence of vaccination against paratuberculosis on the diagnosis of caprine tuberculosis during official eradication programmes in Castilla y León (Spain). Transbound Emerg Dis 2020; 68:692-703. [PMID: 32668068 DOI: 10.1111/tbed.13732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
The information generated from the official eradication programmes of caprine tuberculosis (TB) in Castilla y León, Spain, during 2018, has been used to assess the effect of vaccination against paratuberculosis (PTB) and the presence of this infection, on the single intradermal tuberculin (SIT) test results. Data from 121,665 goats belonging to 1936 different herds were analysed using generalized linear models. An epidemiological survey was conducted to know the herd immunization status against PTB and the date of last vaccination. All SIT test-positive animals were further investigated in order to confirm the diagnosis of TB, through bacterial culture, and PTB, by histopathological and qPCR analyses. SIT positivity was found in 39 (2.01%) herds and 507 (0.41%) goats. TB was confirmed by M. caprae or M. bovis isolation in 10 (0.51%) herds and 46 (0.038%) goats. PTB was diagnosed in 13 (33.33%) and 55 (10.84%) of the SIT test-positive herds and goats, respectively. Vaccination against PTB showed a significant influence on the results of the SIT test at herd level, with higher positivity detected among those herds vaccinated. However, this effect was not observed when the total number of animals was considered, where the highest positivity was found in unvaccinated goats. The time elapsed between vaccination and SIT test performance also influenced the results. The strongest effect was found when less than eight months elapsed between performing both activities, and to a lesser extent between 8 and 12 months. Conversely, no positive herds or animals were found when the time elapsed was higher than one year. No significant effect of the presence of PTB was observed. These findings demonstrate that the use of PTB vaccine does not result in false positives to a SIT test at individual level, provided that the time elapsed between the performance of both practices is higher than 12 months.
Collapse
Affiliation(s)
- José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Miguel Fernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Marcos Royo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Anna Grau
- Servicio de Sanidad Animal, Junta de Castilla y León, Valladolid, Spain
| | | | - Julio Benavides
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - María Del Carmen Ferreras
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| | - Olga Mínguez
- Servicio de Sanidad Animal, Junta de Castilla y León, Valladolid, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, León, Spain
| |
Collapse
|