1
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
2
|
Zelenina D, Kuzmenkova N, Sobolev D, Boldyrev K, Namsaraev Z, Artemiev G, Samylina O, Popova N, Safonov A. Biogeochemical Factors of Cs, Sr, U, Pu Immobilization in Bottom Sediments of the Upa River, Located in the Zone of Chernobyl Accident. BIOLOGY 2022; 12:biology12010010. [PMID: 36671703 PMCID: PMC9854679 DOI: 10.3390/biology12010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Laboratory modeling of Cs, Sr, U, Pu immobilization by phytoplankton of the river Upa, affected after the Chernobyl accident, has been carried out. Certain conditions are selected for strong fixation of radionuclides in bottom sediments due to biogeochemical processes. The process of radionuclide removal from the water phase via precipitation was based on their accumulation by phytoplankton, stimulated by nitrogen and phosphorus sources. After eight days of stimulation, planktonic phototrophic biomass, dominated by cyanobacteria of the genus Planktothrix, appears in the water sample. The effectiveness of U, Pu and Sr purification via their transfer to bottom sediment was observed within one month. The addition of ammonium sulfate and phosphate (Ammophos) led to the activation of sulfate- and iron-reducing bacteria of the genera Desulfobacterota, Desulfotomaculum, Desulfosporomusa, Desulfosporosinus, Thermodesulfobium, Thiomonas, Thiobacillus, Sulfuritallea, Pseudomonas, which form sulphide ferrous precipitates such as pyrite, wurtzite, hydrotroillite, etc., in anaerobic bottom sediments. The biogenic mineral composition of the sediments obtained under laboratory conditions was verified via thermodynamic modeling.
Collapse
Affiliation(s)
- Darya Zelenina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
| | - Natalia Kuzmenkova
- Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- V. Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, Kosygina Str. 19, Moscow 119991, Russia
| | - Denis Sobolev
- Nuclear Safety Institute, RAS, Bolshaya Tulskaya St. 52, Moscow 115191, Russia
| | - Kirill Boldyrev
- Nuclear Safety Institute, RAS, Bolshaya Tulskaya St. 52, Moscow 115191, Russia
| | - Zorigto Namsaraev
- Kurchatov Centre for Genome Research, NRC Kurchatov Institute, Akad. Kurchatov Sq., 2, Moscow 123098, Russia
| | - Grigoriy Artemiev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
| | - Olga Samylina
- Winogradsky Institute of Microbiology, Research Centre for Biotechnology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow 117312, Russia
| | - Nadezhda Popova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
| | - Alexey Safonov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Obrucheva Str. 40, Moscow 117342, Russia
- Correspondence:
| |
Collapse
|
3
|
Otaki JM, Sakauchi K, Taira W. The second decade of the blue butterfly in Fukushima: Untangling the ecological field effects after the Fukushima nuclear accident. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1539-1550. [PMID: 35475314 DOI: 10.1002/ieam.4624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Many field observations of the biological effects of the Fukushima nuclear accident have been reported in the first decade after the accident. A series of observational and experimental studies have demonstrated causal adverse effects on the pale grass blue butterfly even at the low-level radiation exposure in the "field," contrary to the dosimetric view that insects are generally tolerant of radiation exposure. However, it has been demonstrated that the pale grass blue butterfly is tolerant of high oral doses of anthropogenic radioactive cesium (137 Cs) under "laboratory" conditions. This field-laboratory paradox can be explained by ecological field effects; for example, radiation stress in the field causes physiological and biochemical changes in the host plant, which then trophically affects butterfly larvae. The second decade of butterfly-based Fukushima research will be devoted to demonstrating how such adverse field effects occur. Changes in the host plant's nutritional contents likely affect butterfly physiology. The host plant may also upregulate secondary metabolites that affect herbivorous insects. The plant may be affected by changes in endophytic soil microbes in radioactively contaminated areas. If demonstrated, these results will reveal that the delicate ecological balances among the butterfly, its host plant, and soil microbes have been affected by radioactive pollution in Fukushima, which has important implications for environmental policies and human health. Integr Environ Assess Manag 2022;18:1539-1550. © SETAC.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Research Planning Office, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|