1
|
Bibard A, Martinetti D, Giraud A, Picado A, Chalvet-Monfray K, Porphyre T. Quantitative risk assessment for the introduction of bluetongue virus into mainland Europe by long-distance wind dispersal of Culicoides spp.: A case study from Sardinia. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 38955987 DOI: 10.1111/risa.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
Europe faces regular introductions and reintroductions of bluetongue virus (BTV) serotypes, most recently exemplified by the incursion of serotype 3 in the Netherlands. Although the long-distance wind dispersal of the disease vector, Culicoides spp., is recognized as a virus introduction pathway, it remains understudied in risk assessments. A Quantitative Risk Assessment framework was developed to estimate the risk of BTV-3 incursion into mainland Europe from Sardinia, where the virus has been present since 2018. We used an atmospheric transport model (HYbrid Single-Particle Lagrangian Integrated Trajectory) to infer the probability of airborne dispersion of the insect vector. Epidemiological disease parameters quantified the virus prevalence in vector population in Sardinia and its potential first transmission after introduction in a new area. When assuming a 24h maximal flight duration, the risk of BTV introduction from Sardinia is limited to the Mediterranean Basin, mainly affecting the southwestern area of the Italian Peninsula, Sicily, Malta, and Corsica. The risk extends to the northern and central parts of Italy, Balearic archipelago, and mainland France and Spain, mostly when maximal flight duration is longer than 24h. Additional knowledge on vector flight conditions and Obsoletus complex-specific parameters could improve the robustness of the model. Providing both spatial and temporal insights into BTV introduction risks, our framework is a key tool to guide global surveillance and preparedness against epizootics.
Collapse
Affiliation(s)
- Amandine Bibard
- Global Innovation, Boehringer Ingelheim Animal Health France, Saint-Priest, France
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
- Epidémiologie Des Maladies Animales et Zoonotiques, UMR EPIA, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Davide Martinetti
- Biostatistique et Processus Spatiaux, UMR 0546, INRAE, Avignon, France
| | - Aymeric Giraud
- Biostatistique et Processus Spatiaux, UMR 0546, INRAE, Avignon, France
| | - Albert Picado
- Global Innovation, Boehringer Ingelheim Animal Health France, Saint-Priest, France
| | - Karine Chalvet-Monfray
- Epidémiologie Des Maladies Animales et Zoonotiques, UMR EPIA, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| |
Collapse
|
2
|
Amenu K, McIntyre KM, Moje N, Knight-Jones T, Rushton J, Grace D. Approaches for disease prioritization and decision-making in animal health, 2000-2021: a structured scoping review. Front Vet Sci 2023; 10:1231711. [PMID: 37876628 PMCID: PMC10593474 DOI: 10.3389/fvets.2023.1231711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023] Open
Abstract
This scoping review identifies and describes the methods used to prioritize diseases for resource allocation across disease control, surveillance, and research and the methods used generally in decision-making on animal health policy. Three electronic databases (Medline/PubMed, Embase, and CAB Abstracts) were searched for articles from 2000 to 2021. Searches identified 6, 395 articles after de-duplication, with an additional 64 articles added manually. A total of 6, 460 articles were imported to online document review management software (sysrev.com) for screening. Based on inclusion and exclusion criteria, 532 articles passed the first screening, and after a second round of screening, 336 articles were recommended for full review. A total of 40 articles were removed after data extraction. Another 11 articles were added, having been obtained from cross-citations of already identified articles, providing a total of 307 articles to be considered in the scoping review. The results show that the main methods used for disease prioritization were based on economic analysis, multi-criteria evaluation, risk assessment, simple ranking, spatial risk mapping, and simulation modeling. Disease prioritization was performed to aid in decision-making related to various categories: (1) disease control, prevention, or eradication strategies, (2) general organizational strategy, (3) identification of high-risk areas or populations, (4) assessment of risk of disease introduction or occurrence, (5) disease surveillance, and (6) research priority setting. Of the articles included in data extraction, 50.5% had a national focus, 12.3% were local, 11.9% were regional, 6.5% were sub-national, and 3.9% were global. In 15.2% of the articles, the geographic focus was not specified. The scoping review revealed the lack of comprehensive, integrated, and mutually compatible approaches to disease prioritization and decision support tools for animal health. We recommend that future studies should focus on creating comprehensive and harmonized frameworks describing methods for disease prioritization and decision-making tools in animal health.
Collapse
Affiliation(s)
- Kebede Amenu
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Microbiology, Immunology and Veterinary, Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - K. Marie McIntyre
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nebyou Moje
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Theodore Knight-Jones
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Jonathan Rushton
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Delia Grace
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Food and Markets Department, Natural Resources Institute, University of Greenwich, London, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
3
|
Gortázar C, Barroso P, Nova R, Cáceres G. The role of wildlife in the epidemiology and control of Foot-and-mouth-disease And Similar Transboundary (FAST) animal diseases: A review. Transbound Emerg Dis 2021; 69:2462-2473. [PMID: 34268873 DOI: 10.1111/tbed.14235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Transboundary Animal Diseases (TADs) are notifiable diseases which are highly transmissible and have the potential for rapid spread regardless of national borders. Many TADs are shared between domestic animals and wildlife, with the potential to affect both livestock sector and wildlife conservation and eventually, public health in the case of zoonosis. The European Commission for the Control of Foot-and-Mouth Disease (EuFMD), a commission of the Food and Agriculture Organization of the United Nations (FAO), has grouped six TADs as 'Foot-and-mouth disease (FMD) And Similar Transboundary animal diseases' (FAST diseases). FAST diseases are ruminant infections caused by viruses, for which vaccination is a control option. The EuFMD hold-FAST strategy aims primarily at addressing the threat represented by FAST diseases for Europe. Prevention and control of FAST diseases might benefit from assessing the role of wildlife. We reviewed the role of wildlife as indicators, victims, bridge hosts or maintenance hosts for the six TADs included in the EuFMD hold-FAST strategy: FMD, peste des petits ruminants, lumpy skin disease, sheep and goatpox, Rift Valley fever and bovine ephemeral fever. We observed that wildlife can act as indicator species. In addition, they are occasionally victims of disease outbreaks, and they are often relevant for disease management as either bridge or maintenance hosts. Wildlife deserves to become a key component of future integrated surveillance and disease control strategies in an ever-changing world. It is advisable to increase our knowledge on wildlife roles in relevant TADs to improve our preparedness in case of an outbreak in previously disease-free regions, where wildlife may be significant for disease surveillance and control.
Collapse
Affiliation(s)
- Christian Gortázar
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Patricia Barroso
- Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Rodrigo Nova
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Germán Cáceres
- European Commission for the Control of Foot-and-Mouth Disease, Rome, Italy
| |
Collapse
|
4
|
Manhas PK, Quintela IA, Wu VCH. Enhanced Detection of Major Pathogens and Toxins in Poultry and Livestock With Zoonotic Risks Using Nanomaterials-Based Diagnostics. Front Vet Sci 2021; 8:673718. [PMID: 34164454 PMCID: PMC8215196 DOI: 10.3389/fvets.2021.673718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has gained prominence over the recent years in multiple research and application fields, including infectious diseases in healthcare, agriculture, and veterinary science. It remains an attractive and viable option for preventing, diagnosing, and treating diseases in animals and humans. The apparent efficiency of nanomaterials is due to their unique physicochemical properties and biocompatibility. With the persistence of pathogens and toxins in the poultry and livestock industries, rapid diagnostic tools are of utmost importance. Though there are many promising nanomaterials-based diagnostic tests specific to animal disease-causing agents, many have not achieved balanced sensitivity, specificity, reproducibility, and cost-effectiveness. This mini-review explores several types of nanomaterials, which provided enhancement on the sensitivity and specificity of recently reported diagnostic tools related to animal diseases. Recommendations are also provided to facilitate more targeted animal populations into the development of future diagnostic tools specifically for emerging and re-emerging animal diseases posing zoonotic risks.
Collapse
Affiliation(s)
- Priya K Manhas
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Irwin A Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|