1
|
Mkulo EM, Wang B, Amoah K, Huang Y, Cai J, Jin X, Wang Z. The current status and development forecasts of vaccines for aquaculture and its effects on bacterial and viral diseases. Microb Pathog 2024; 196:106971. [PMID: 39307198 DOI: 10.1016/j.micpath.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The aquaculture sector predicts protein-rich meals by 2040 and has experienced significant economic shifts since 2000. However, challenges emanating from disease control measures, brood stock improvement, feed advancements, hatchery technology, and water quality management due to environmental fluctuations have been taken as major causative agents for hindering the sector's growth. For the past years, aquatic disease prevention and control have principally depended on the use of various antibiotics, ecologically integrated control, other immunoprophylaxis mechanisms, and chemical drugs, but the long-term use of chemicals such as antibiotics not only escalates antibiotic-resistant bacteria and genes but also harms the fish and the environments, resulting in drug residues in aquatic products, severely obstructing the growth of the aquaculture sector. The field of science has opened new avenues in basic and applied research for creating and producing innovative and effective vaccines and the enhancement of current vaccines to protect against numerous infectious diseases. Recent advances in vaccines and vaccinology could lead to novel vaccine candidates that can tackle fish diseases, including parasitic organism agents, for which the current vaccinations are inadequate. In this review, we study and evaluate the growing aquaculture production by focusing on the current knowledge, recent progress, and prospects related to vaccinations and immunizations in the aquaculture industry and their effects on treating bacterial and viral diseases. The subject matter covers a variety of vaccines, such as conventional inactivated and attenuated vaccines as well as advanced vaccines, and examines their importance in real-world aquaculture scenarios. To encourage enhanced importation of vaccines for aquaculture sustainability and profitability and also help in dealing with challenges emanating from diseases, national and international scientific and policy initiatives need to be informed about the fundamental understanding of vaccines.
Collapse
Affiliation(s)
- Evodia Moses Mkulo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Bei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Kwaku Amoah
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China.
| | - Yu Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Jia Cai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Xiao Jin
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 327005, China
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, 524088, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China.
| |
Collapse
|
2
|
Garcia-Llorens J, Garcia C, Paulet P, Le-Tallec B, Dauphin G, Comte S, Catalá-Gregori P, Simon F, Sevilla-Navarro S, Sarabia J. Research Note: Validation of a new differentiation approach using the commercial ASAP TM media to detect the Salmonella 441/014 vaccine strain. Poult Sci 2024; 103:103679. [PMID: 38701627 PMCID: PMC11087708 DOI: 10.1016/j.psj.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024] Open
Abstract
Vaccination is one of the most important control tools to reduce Salmonella in poultry production. In order for a live vaccine to be licensed for field use it should be provided with the detection methods to differentiate it from field strains. This paper aims to describe the validation of an alternative method for the differentiation of the Salmonella 441/014 vaccine strain from field strains, using a chromogenic Media, ASAP from bioMérieux. The ASAP-based differentiation method was compared with already authorized methods, namely the Anicon SE Kylt PCR DIVA 1 assay and Ceva S-Check Salmonella differentiation kit, following the ISO 16140-6:2019 validation method guidelines. A Generalised Linear Model was fitted to the data to determine the inclusivity and exclusivity of differentiation methods (PCR Kylt vs. S-Check vs. ASAPTM). Statistical differences were based on a P-value level of < 0.05 (SPSS Inc., Chicago, IL). In this study, we show that the ASAP media was able to differentiate Salmonella Enteritidis vaccine strains from field strains, obtaining 100% agreement between the three differentiation assays. This differentiation approach is quicker, easier to deploy and cheaper as compared to alternative methods.
Collapse
Affiliation(s)
- J Garcia-Llorens
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539, Alquerías del Niño Perdido, Castellón, Spain
| | - C Garcia
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539, Alquerías del Niño Perdido, Castellón, Spain
| | - P Paulet
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - B Le-Tallec
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - G Dauphin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - S Comte
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - P Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539, Alquerías del Niño Perdido, Castellón, Spain
| | - F Simon
- bioMérieux, Marcy l'Etoile, 69280, France
| | - S Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539, Alquerías del Niño Perdido, Castellón, Spain.
| | - J Sarabia
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| |
Collapse
|
3
|
Liao X, Deng R, Warriner K, Ding T. Antibiotic resistance mechanism and diagnosis of common foodborne pathogens based on genotypic and phenotypic biomarkers. Compr Rev Food Sci Food Saf 2023; 22:3212-3253. [PMID: 37222539 DOI: 10.1111/1541-4337.13181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
The emergence of antibiotic-resistant bacteria due to the overuse or inappropriate use of antibiotics has become a significant public health concern. The agri-food chain, which serves as a vital link between the environment, food, and human, contributes to the large-scale dissemination of antibiotic resistance, posing a concern to both food safety and human health. Identification and evaluation of antibiotic resistance of foodborne bacteria is a crucial priority to avoid antibiotic abuse and ensure food safety. However, the conventional approach for detecting antibiotic resistance heavily relies on culture-based methods, which are laborious and time-consuming. Therefore, there is an urgent need to develop accurate and rapid tools for diagnosing antibiotic resistance in foodborne pathogens. This review aims to provide an overview of the mechanisms of antibiotic resistance at both phenotypic and genetic levels, with a focus on identifying potential biomarkers for diagnosing antibiotic resistance in foodborne pathogens. Furthermore, an overview of advances in the strategies based on the potential biomarkers (antibiotic resistance genes, antibiotic resistance-associated mutations, antibiotic resistance phenotypes) for antibiotic resistance analysis of foodborne pathogens is systematically exhibited. This work aims to provide guidance for the advancement of efficient and accurate diagnostic techniques for antibiotic resistance analysis in the food industry.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, China
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China
| |
Collapse
|
4
|
Jiang X, Chu C, Wang Z, Gu J, Hong Y, Li Q, Jiao X. Preclinical evaluation of OMVs as potential vaccine candidates against Salmonella enterica serovar Enteritidis infection. Front Cell Infect Microbiol 2022; 12:1037607. [PMID: 36389161 PMCID: PMC9646977 DOI: 10.3389/fcimb.2022.1037607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2024] Open
Abstract
Salmonella enterica serovar Enteritidis is the most prevalent serotype that causes human infections worldwide. Consumption of S. Enteritidis-contaminated animal foods is a major source of human infections; however, eradicating bacteria from animals remains difficult. Therefore, it is necessary to develop new measures to prevent and control salmonellosis. Here, we used the outer-membrane vesicles (OMVs) of S. Enteritidis and assessed their protective efficacy and immune response in mice. Deletion of tolR in S. Enteritidis increased the production and size of OMVs compared to those in the wild type (WT) and ΔrfaQ strains. Intramuscular immunization with OMVs conferred greater protection than intraperitoneal and intranasal immunization. Moreover, OMVs extracted from both WT and ΔtolR strains provided an 83.3% protective rate in mice challenged with S. Enteritidis, which was higher than that provided by OMVs extracted from the ΔrfaQ strain. However, compared with OMVs from the ΔtolR strain, OMVs from WT and ΔrfaQ strains rapidly eradicated S. Enteritidis colonizing the liver, spleen, ileum, and cecum of BALB/c mice after immunization. Immunization with OMVs from each of the three strains induced humoral immune responses and showed no side effects on the growth of mice. Our study revealed that OMVs from various S. Enteritidis strains could be developed for use as subunit vaccine candidates against nontyphoidal Salmonella infections in mammals.
Collapse
Affiliation(s)
- Xi Jiang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Chao Chu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Jiaojie Gu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Yaming Hong
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Genome-Wide Searching Single Nucleotide-Polymorphisms (SNPs) and SNPs-Targeting a Multiplex Primer for Identification of Common Salmonella Serotypes. Pathogens 2022; 11:pathogens11101075. [PMID: 36297133 PMCID: PMC9611365 DOI: 10.3390/pathogens11101075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
A rapid and high-quality single-nucleotide polymorphisms (SNPs)-based method was developed to improve detection and reduce salmonellosis burden. In this study, whole-genome sequence (WGS) was used to investigate SNPs, the most common genetic marker for identifying bacteria. SNP-sites encompassing 15 sets of primers (666–863 bp) were selected and used to amplify the target Salmonella serovar strains, and the amplified products were sequenced. The prevalent Salmonella enterica subspecies enterica serovars, including Typhimurium; Enteritidis, Agona, enterica, Typhi, and Abony, were amplified and sequenced. The amplified sequences of six Salmonella serovars with 15 sets of SNP-sites encompassing primers were aligned, explored SNPs, and SNPs-carrying primers (23 sets) were designed to develop a multiplex PCR marker (m-PCR). Each primer exists in at least two SNPs bases at the 3′ end of each primer, such as one was wild, and another was a mismatched base by transition or transversion mutation. Thus, twenty-three sets of SNP primers (242–670 bp), including 13 genes (SBG, dedA, yacG, mrcB, mesJ, metN, rihA/B, modA, hutG, yehX, ybiY, moeB, and sopA), were developed for PCR confirmation of target Salmonella serovar strains. Finally, the SNPs in four genes, including fliA gene (S. Enteritidis), modA (S. Agona and S. enterica), sopA (S. Abony), and mrcB (S. Typhimurium and S. Typhi), were used for detection markers of six target Salmonella serotypes. We developed an m-PCR primer set in which Salmonella serovars were detected in a single reaction. Nevertheless, m-PCR was validated with 21 Salmonella isolates (at least one isolate was taken from one positive animal fecal, and n = 6 reference Salmonella strains) and non-Salmonella bacteria isolates. The SNP-based m-PCR method would identify prevalent Salmonella serotypes, minimize the infection, and control outbreaks.
Collapse
|
6
|
Ji HJ, Jang AY, Song JY, Ahn KB, Han SH, Bang SJ, Jung HK, Hur J, Seo HS. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front Immunol 2022; 13:931052. [PMID: 35898510 PMCID: PMC9310569 DOI: 10.3389/fimmu.2022.931052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a leading cause of food-borne diseases in humans worldwide, resulting in severe morbidity and mortality. They are carried asymptomatically in the intestine or gallbladder of livestock, and are transmitted predominantly from animals to humans via the fecal-oral route. Thus, the best preventive strategy is to preemptively prevent transmission to humans by vaccinating livestock. Live attenuated vaccines have been mostly favored because they elicit both cellular and humoral immunity and provide long-term protective immunity. However, developing these vaccines is a laborious and time-consuming process. Therefore, most live attenuated vaccines have been mainly used for phenotypic screening using the auxotrophic replica plate method, and new types of vaccines have not been sufficiently explored. In this study, we used Radiation-Mutation Enhancement Technology (R-MET) to introduce a wide variety of mutations and attenuate the virulence of Salmonella spp. to develop live vaccine strains. The Salmonella Typhimurium, ST454 strain (ST WT) was irradiated with Cobalt60 gamma-irradiator at 1.5 kGy for 1 h to maximize the mutation rate, and attenuated daughter colonies were screened using in vitro macrophage replication capacity and in vivo mouse infection assays. Among 30 candidates, ATOMSal-L6, with 9,961-fold lower virulence than the parent strain (ST454) in the mouse LD50 model, was chosen. This vaccine candidate was mutated at 71 sites, and in particular, lost one bacteriophage. As a vaccine, ATOMSal-L6 induced a Salmonella-specific IgG response to provide effective protective immunity upon intramuscular vaccination of mice. Furthermore, when mice and sows were orally immunized with ATOMSal-L6, we found a strong protective immune response, including multifunctional cellular immunity. These results indicate that ATOMSal-L6 is the first live vaccine candidate to be developed using R-MET, to the best of our knowledge. R-MET can be used as a fast and effective live vaccine development technology that can be used to develop vaccine strains against emerging or serotype-shifting pathogens.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - A-Yeung Jang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok Jin Bang
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| |
Collapse
|
7
|
Ceyssens PJ, Van den Bossche A, Phan LK, Van Hoorde K, Mattheus W. A molecular assay for rapidly distinguishing the AviPro SALMONELLA VAC T vaccine strain from wild-type field isolates. J Microbiol Methods 2021; 184:106190. [PMID: 33766608 DOI: 10.1016/j.mimet.2021.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
Rapid differentiation of the AviPro Salmonella VAC T strain from wild-type Salmonella ser. Typhimurium isolates is essential for the monitoring of veterinary isolates and targeted control actions. The distinction between the two strain types is routinely made by phenotypic antimicrobial resistance testing, but this sometime leads to ambiguous results with major economic implications. In this study, we used whole-genome sequencing to identify conserved and specific mutations in resistance and virulence genes which enable to distinguish field and vaccine strains. Based on this information, we developed and validated (n = 199) a Luminex-based assay targeting seven specific single-nucleotide polymorphisms. This molecular test is able to distinguish both Salmonella ser. Typhimurium types with 100% sensitivity and specificity within one working day.
Collapse
Affiliation(s)
| | | | - Lac Kim Phan
- Unit of Human Bacterial Diseases, Sciensano, Belgium
| | | | | |
Collapse
|
8
|
Li Q, Ren J, Xian H, Yin C, Yuan Y, Li Y, Ji R, Chu C, Qiao Z, Jiao X. rOmpF and OMVs as efficient subunit vaccines against Salmonella enterica serovar Enteritidis infections in poultry farms. Vaccine 2020; 38:7094-7099. [PMID: 32951940 DOI: 10.1016/j.vaccine.2020.08.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Salmonella enterica serovar Enteritidis remains the most prevalent serotype causing human salmonellosis through the consumption of contaminated foods, especially poultry products. The development of a subunit vaccine against S. Enteritidis can not only protect chickens against Salmonella infection in the poultry industry but also cut the transmission sources. In this study, both the expressed recombinant outer membrane protein F (rOmpF) and extracted outer membrane vesicles (OMVs) were developed as subunit vaccines against S. Enteritidis challenge in chickens. Immunization with the subunit vaccine could induce not only antibody production but also strong cell-mediated immune response. Both rOmpF plus QuilA adjuvant and OMVs alone had highly protective efficacy against S. Enteritidis challenge and rapidly decreased the colonization of bacteria in chicken. These findings revealed the potential application of rOmpF and OMVs as subunit vaccines in the poultry industry.
Collapse
Affiliation(s)
- Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Jingwei Ren
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Honghong Xian
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Chao Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yu Yuan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yang Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Ruoyun Ji
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Chao Chu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Zhuang Qiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
9
|
Newton K, Gosling B, Rabie A, Davies R. Field investigations of multidrug-resistant Salmonella Infantis epidemic strain incursions into broiler flocks in England and Wales. Avian Pathol 2020; 49:631-641. [PMID: 32783749 DOI: 10.1080/03079457.2020.1809634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Salmonella Infantis is a major public health concern and has become established in the broiler sector in some European countries, as well as globally, and is frequently multidrug resistant (MDR). Three broiler farms in England and Wales, which had incursions of MDR S. Infantis between 2013 and 2017, were investigated longitudinally. The company feed mill and two associated hatcheries were intensively sampled. Following each visit, advice on cleaning, disinfection and other control measures for Salmonella was given to help eliminate S. Infantis from the premises. Four samples collected from inside the broiler houses after cleaning and disinfection were Salmonella-positive, indicating cleaning and disinfection within houses was generally effective. However, the exterior of persistently infected houses remained substantially contaminated and feeding systems could not be sampled. Clearance of S. Infantis from affected houses requires additional attention to decontamination of these aspects. Sixty S. Infantis isolates were tested for antimicrobial susceptibility by disk diffusion tests. All isolates were MDR, with resistance to at least nalidixic acid (Na), tetracycline (T), compound sulphonamide (Su), streptomycin (S) and furazolidone. This is a similar resistance pattern to the previously identified MDR (NaSSuT) clone in some European countries. The study shows that to remove S. Infantis from premises effectively, a combined approach to poultry houses and the surrounding farm environment is necessary. A revised cleaning and disinfection programme was developed that was associated with the clearance of MDR S. Infantis from persistently infected and newly infected broiler flocks, and UK livestock remains free of MDR S. Infantis. RESEARCH HIGHLIGHTS Standard cleaning and disinfection protocols did not completely eliminate infection. A revised cleaning and disinfection programme was developed. Disinfecting feeder lines and external areas was key to eliminating S. Infantis. Identified similar antimicrobial resistance pattern to MDR epidemic S. Infantis.
Collapse
Affiliation(s)
- Kate Newton
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| | - Becky Gosling
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| | - André Rabie
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| | - Rob Davies
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| |
Collapse
|