1
|
Wang S, Wang G, Tang YD, Li S, Qin L, Wang M, Yang YB, Gottschalk M, Cai X. Streptococcus suis Serotype 2 Infection Induces Splenomegaly with Splenocyte Apoptosis. Microbiol Spectr 2022; 10:e0321022. [PMID: 36287014 PMCID: PMC9769541 DOI: 10.1128/spectrum.03210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/01/2022] [Indexed: 01/10/2023] Open
Abstract
Little is known about the damage to the important peripheral immune organ spleen caused by Streptococcus suis infection. In this study, we found that S. suis induced splenomegaly and lymphocyte disruption in spleens of mice. To explore the mechanism of splenic lesions induced by S. suis, we conducted further studies. The results showed that S. suis induced apoptosis in B cells, which is related to the cleavage of caspase-3 and caspase-8, but not the release of apoptosis-inducing factor (AIF). Thus, S. suis induced apoptosis in the spleen through caspase-dependent and AIF-independent pathways. Inflammation lesions induced in the spleen of infected mice were also investigated; we found macrophages increased in histopathological lesions of infected spleens from 12 h postinoculation to 7 days postinoculation (dpi), and the type of increased macrophages was M1 type by confocal microscopy, which can secrete proinflammatory cytokines. Meanwhile, inflammasome NLRP3 and caspase-1 were activated, and gasdermin D (GSDMD) was cleaved, which causes pyroptosis that may result in the release of numerous proinflammatory cytokines. What's more, the increase of p-JNK and p-p38 indicated that the MAPK pathway was also involved in the proinflammatory responses during S. suis infection, whereas anti-inflammatory responses in spleen were suppressed, with regulatory T cells (Tregs) upregulating at 1 dpi. Taken together, proinflammatory immune responses dominate in early infection, which induce splenomegaly and splenocyte apoptosis. This is the first report of mechanisms associated with S. suis-induced splenic lesions. IMPORTANCE Streptococcus suis serotype 2 is considered an emerging pathogen and represents a threat to humans and animals. The spleen is an important peripheral immune organ, and splenomegaly is a consequence of lesions and an important clinical indicator of S. suis infection. However, knowledge of the mechanisms underlying spleen lesions is still very limited. In the present work, we made the investigation to explain the phenomenon and the related immunomodulation in a mouse infection model. The obtained results show that inflammation contributes to splenomegaly, while apoptosis contributes to lymphocyte disruption in spleens. Related signaling pathways were discovered which have never been associated with S. suis-induced splenic injury. The new knowledge generated will help us better understand the mechanism of S. suis pathogenesis.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siqi Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Menghang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Nogueira RA, Lira MGS, Licá ICL, Frazão GCCG, Dos Santos VAF, Filho ACCM, Rodrigues JGM, Miranda GS, Carvalho RC, Nascimento FRF. Praziquantel: An update on the mechanism of its action against schistosomiasis and new therapeutic perspectives. Mol Biochem Parasitol 2022; 252:111531. [PMID: 36375598 DOI: 10.1016/j.molbiopara.2022.111531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis, although its mechanisms of action are not completely understood. PZQ acts largely on adult worms. This narrative literature review describes what is known about the mechanisms of action of PZQ against schistosomes from in vitro and in vivo studies and highlights the molecular targets in parasites and immune responses induced in definitive hosts by this drug. Moreover, new therapeutic uses of PZQ are discussed. Studies have demonstrated that in addition to impacting voltage-operated Ca2 + channels, PZQ may interact with other schistosome molecules, such as myosin regulatory light chain, glutathione S-transferase, and transient receptor potential channels. Following PZQ administration, increased T regulatory type 1 (Tr1) cell differentiation and decreased inflammation were observed, indicating that PZQ promotes immunoregulatory pathways. Although PZQ is widely used in mass drug administration schemes, the existence of resistant parasites has not been proven; however, it is a concern that should be constantly investigated in human populations. In addition, we discuss studies that evaluate health applications of PZQ (other than helminth infection), such as its effect in cancer therapy and its adjuvant action in vaccines against viruses.
Collapse
Affiliation(s)
- Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Education, Federal Institute of Education, Science and Technology of Maranhão, Zé Doca, MA, Brazil
| | - Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - Vitor Augusto Ferreira Dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Silva Miranda
- Department of Education, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, MA, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
3
|
Zhong H, Jin Y. Multifunctional Roles of MicroRNAs in Schistosomiasis. Front Microbiol 2022; 13:925386. [PMID: 35756064 PMCID: PMC9218868 DOI: 10.3389/fmicb.2022.925386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis is a parasitic disease that is caused by helminths of the genus Schistosoma. The dioecious schistosomes mate and lay eggs after undergoing a complex life cycle. Schistosome eggs are mostly responsible for the transmission of schistosomiasis and chronic fibrotic disease induced by egg antigens is the main cause of the high mortality rate. Currently, chemotherapy with praziquantel (PZQ) is the only effective treatment against schistosomiasis, although the potential of drug resistance remains a concern. Hence, there is an urgent demand for new and effective strategies to combat schistosomiasis, which is the second most prevalent parasitic disease after malaria. MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal regulatory roles in many organisms, including the development and sexual maturation of schistosomes. Thus, miRNAs are potential targets for treatment of schistosomiasis. Moreover, miRNAs can serve as multifunctional “nano-tools” for cross-species delivery in order to regulate host-parasite interactions. In this review, the multifunctional roles of miRNAs in the growth and development of schistosomes are discussed. The various regulatory functions of host-derived and worm-derived miRNAs on the progression of schistosomiasis are also thoroughly addressed, especially the promotional and inhibitory effects on schistosome-induced liver fibrosis. Additionally, the potential of miRNAs as biomarkers for the diagnosis and treatment of schistosomiasis is considered.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Lam HYP, Liang TR, Peng SY. Ameliorative effects of Schisandrin B on Schistosoma mansoni-induced hepatic fibrosis in vivo. PLoS Negl Trop Dis 2021; 15:e0009554. [PMID: 34161342 PMCID: PMC8259995 DOI: 10.1371/journal.pntd.0009554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/06/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis is second only to malaria as the most devastating parasitic disease in the world. It is caused by the helminths Schistosoma mansoni (S. mansoni), S. haematobium, or S. japonicum. Typically, patients with schistosomiasis suffer from symptoms of liver fibrosis and hepatosplenomegaly. Currently, patients were treated with praziquantel. Although praziquantel effectively kills the worm, it cannot prevent re-infection or resolve liver fibrosis. Also, current treatment options are not ample to completely cure liver fibrosis and splenic damages. Moreover, resistance of praziquantel has been reported in vivo and in vitro studies. Therefore, finding new effective treatment agents is urgently needed. Schisandrin B (Sch B) of Schisandra chinensis has been shown to protect against different liver injuries including fatty liver disease, hepatotoxicity, fibrosis, and hepatoma. We herein investigate the potential of using Sch B to treat S. mansoni-induced liver fibrosis. Results from the present study demonstrate that Sch B is beneficial in treating S. mansoni-induced liver fibrosis and splenic damages, through inhibition of inflammasome activation and apoptosis; and aside from that regulates host immune responses. Besides, Sch B treatment damages male adult worm in the mice, consequently helps to reduce egg production and lessen the parasite burden.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yi Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|