1
|
Rahmawaty A, Cheng LW, Wang PC, Chen SC. Comparative pathogenicity and histopathological analysis of Edwardsiella anguillarum intraperitoneal infection in milkfish (Chanos chanos), Nile tilapia (Oreochromis niloticus) and Asian seabass (Lates calcarifer). JOURNAL OF FISH DISEASES 2024; 47:e13982. [PMID: 38899543 DOI: 10.1111/jfd.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Edwardsiella anguillarum, a highly virulent species within the Edwardsiella genus, causes significant mortality in milkfish farms in Taiwan. This study aimed to investigate the comparison of milkfish susceptibility, a newly identified host species in Taiwanese aquaculture, with other species Nile tilapia (Oreochromis niloticus) and Asian seabass (Lates calcarifer), to E. anguillarum, elucidating its pathogenicity across both seawater and freshwater aquaculture environments. The results showed milkfish exhibited the highest mortality rate of 85% within 48 h of infection, whereas Nile tilapia exhibited a mortality rate of 70% between the second- and tenth-day post challenge, and seabass exhibited a mortality rate of 25% between the second- and sixth-day post challenge. Gross lesions observed in milkfish included splenomegaly and haemorrhage, whereas Nile tilapia exhibited signs of ascites, exophthalmia and brain haemorrhage. Seabass displayed spleen granulomas and haemorrhage at the injection site. Histopathological analysis revealed common features across all three species, including multifocal necrosis, bacterial presence in the necrotic areas, serositis and oedema. Asian seabass also exhibited chronic lesions in the form of splenic granulomas. This study highlights the high susceptibility of milkfish and Nile tilapia to E. anguillarum, emphasizing the urgent need for further investigation into targeted vaccine development for these fish species. These results not only deepen our understanding of the differing levels of pathogenicity among the three species but also offer valuable insights for improving disease prevention and management strategies in aquaculture, including those applied within polyculture systems and for the maintenance of aquaculture water environments.
Collapse
Affiliation(s)
- Atiek Rahmawaty
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Janda JM, Duman M. Expanding the Spectrum of Diseases and Disease Associations Caused by Edwardsiella tarda and Related Species. Microorganisms 2024; 12:1031. [PMID: 38792860 PMCID: PMC11124366 DOI: 10.3390/microorganisms12051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Edwardsiella, previously residing in the family Enterobacteriaceae and now a member of the family Hafniaceae, is currently composed of five species, although the taxonomy of this genus is still unsettled. The genus can primarily be divided into two pathogenic groups: E. tarda strains are responsible for almost all human infections, and two other species (E. ictaluri, E. piscicida) cause diseases in fish. Human infections predominate in subtropical habitats of the world and in specific geospatial regions with gastrointestinal disease, bloodborne infections, and wound infections, the most common clinical presentations in decreasing order. Gastroenteritis can present in many different forms and mimic other intestinal disturbances. Chronic gastroenteritis is not uncommon. Septicemia is primarily found in persons with comorbid conditions including malignancies and liver disease. Mortality rates range from 9% to 28%. Most human infections are linked to one of several risk factors associated with freshwater or marine environments such as seafood consumption. In contrast, edwardsiellosis in fish is caused by two other species, in particular E. ictaluri. Both E. ictaluri and E. piscicida can cause massive outbreaks of disease in aquaculture systems worldwide, including enteric septicemia in channel catfish and tilapia. Collectively, these species are increasingly being recognized as important pathogens in clinical and veterinary medicine. This article highlights and provides a current perspective on the taxonomy, microbiology, epidemiology, and pathogenicity of this increasingly important group.
Collapse
Affiliation(s)
- J. Michael Janda
- Kern County Public Health Laboratory, Bakersfield, CA 93306, USA
| | - Muhammed Duman
- Aquatic Animal Disease Department, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey;
| |
Collapse
|
3
|
Bergmann L, Balzer Le S, Hageskal G, Preuss L, Han Y, Astafyeva Y, Loevenich S, Emmann S, Perez-Garcia P, Indenbirken D, Katzowitsch E, Thümmler F, Alawi M, Wentzel A, Streit WR, Krohn I. New dienelactone hydrolase from microalgae bacterial community-Antibiofilm activity against fish pathogens and potential applications for aquaculture. Sci Rep 2024; 14:377. [PMID: 38172513 PMCID: PMC10764354 DOI: 10.1038/s41598-023-50734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Biofilms are resistant to many traditional antibiotics, which has led to search for new antimicrobials from different and unique sources. To harness the potential of aquatic microbial resources, we analyzed the meta-omics datasets of microalgae-bacteria communities and mined them for potential antimicrobial and quorum quenching enzymes. One of the most interesting candidates (Dlh3), a dienelactone hydrolase, is a α/β-protein with predicted eight α-helices and eight β-sheets. When it was applied to one of the major fish pathogens, Edwardsiella anguillarum, the biofilm development was reproducibly inhibited by up to 54.5%. The transcriptome dataset in presence of Dlh3 showed an upregulation in functions related to self-defense like active genes for export mechanisms and transport systems. The most interesting point regarding the biotechnological potential for aquaculture applications of Dlh3 are clear evidence of biofilm inhibition and that health and division of a relevant fish cell model (CHSE-214) was not impaired by the enzyme.
Collapse
Affiliation(s)
- Lutgardis Bergmann
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simone Balzer Le
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Gunhild Hageskal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Lena Preuss
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yuchen Han
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Yekaterina Astafyeva
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Simon Loevenich
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sarah Emmann
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Pablo Perez-Garcia
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | | | - Elena Katzowitsch
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Fritz Thümmler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany
| | - Ines Krohn
- Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
| |
Collapse
|
4
|
Xu X, Yin P, Zhang Y, Yang H. The immune response of fairy shrimp Branchinella kugenumaensis against Edwardsiella anguillarum infections by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109260. [PMID: 38043874 DOI: 10.1016/j.fsi.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
To explore the immune defense mechanisms of the ancient crustacean fairy shrimp (B.kugenumaensis) and uncover antibacterial-related gene resources, the present study analyzed the pathological changes in B. kugenumaensis infected with E. anguillarum. Differential gene expression changes between the infected and uninfected groups were investigated through comparative transcriptome sequencing to elucidate the molecular responses to the infection. Under transmission electron microscopy, the intestinal mucosal structure of B. kugenumaensis was damaged, the microvilli disappeared, the number of mitochondria and endoplasmic reticulum increased, mitochondria vacuolated and arranged disordered. The transcriptome data indicated that a total of 250,520,580 clean reads were assembled into 66,502 unigenes, with an average length of 789 bp and an N50 length of 1326 bp. Following bacterial infection, approximately 2678 differentially expressed genes (DEGs) were identified, with 1732 genes upregulated and 946 genes downregulated. The detected DEGs related to immune responses, particularly involving apoptosis, lysosome, autophagy, phagosome, and MAPK signaling pathways. Moreover, 9 immunity-related genes with different expressions were confirmed by using real-time quantitative PCR (RT-qPCR). This study first reports the pathogenicity of E. anguillarum on B. kugenumaensis and speculates that immune effectors such as lysozyme and lectin, as well as apoptosis, lysosome, and the MAPK signaling pathway, play crucial roles in the innate immunity of fairy shrimp. These findings deepen our understanding of fairy shrimp immune regulatory mechanisms and provide a theoretical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Peng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Ofek T, Izhaki I, Halpern M. Aeromonashydrophila infection in tilapia triggers changes in the microbiota composition of fish internal organs. FEMS Microbiol Ecol 2023; 99:fiad137. [PMID: 37881004 DOI: 10.1093/femsec/fiad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aeromonas hydrophila is a major pathogenic species that causes mass mortality in various freshwater fish species including hybrid tilapia, the main fish species in Israeli aquaculture. Our hypothesis was that A. hydrophila infection may cause changes in the microbiota composition of fish internal organs, and therefore we aimed to study the effect of A. hydrophila infection by injection or by net handling on the microbiota compositions of fish intestine, spleen, and liver. Significant differences in the microbiota composition were found between the internal organs of the diseased and the healthy fish in both experimental setups. Fusobacteriota was the most dominant phylum in the microbiota of healthy fish (∼70%, liver). Cetobacterium was the most abundant genus and relatively more abundant in healthy, compared to diseased fish. When A. hydrophila was inoculated by injection, it was the only pathogenic genus in the spleen and liver of the diseased fish. However, in the handling experiment, Vibrio was also detected in the diseased fish, demonstrating coinfection interactions. Based on these experiments, we conclude that indeed, A. hydrophila infection in tilapia causes changes in the microbiota composition of fish internal organs, and that fish net handling may trigger bacterial infection in freshwater aquaculture.
Collapse
Affiliation(s)
- Tamir Ofek
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushi Ave. Mt. Carmel, Haifa 3498838, Israel
- Central Fish Health Laboratory, Fishery and Aquaculture Department, Ministry of Agriculture and Rural Development, 1 Havazelet St. Nir David 1080300, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushi Ave. Mt. Carmel, Haifa 3498838, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushi Ave. Mt. Carmel, Haifa 3498838, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Derech Kiryat Amal, Tivon 3600600, Israel
| |
Collapse
|
6
|
Wang Y, Zhai S, Wan Q, Xu M, Chen M, Guo S. Pathogenicity of Edwardsiella anguillarum to American eels (Anguilla rostrata) and RNA-seq analysis of host immune response to the E. anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109042. [PMID: 37657556 DOI: 10.1016/j.fsi.2023.109042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Edwardsiella anguillarum is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-E. anguillarum infection remains uncertain. In this study, LD50 of E. anguillarum to American eels was determined and bacterial load in the liver and kidney of eels was assessed post the LD50 of E. anguillarum infection. The results showed that LD50 of E. anguillarum to American eels was determined to be 2.5 × 105 cfu/g body weight, and the bacterial load peaked at 36 and 72 h post the infection (hpi) in the kidney and liver, respectively. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes, as well as ultrastructural pathology in the kidney were charactered by acute nephritis, showing necrosis of the renal tubular epithelial cells, glomerular capillaries dilate, mitochondria swelling and ribosomes separate from the endoplasmic reticulum. Furthermore, the results of qRT-PCR revealed that 12 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 6 hub DEGs play essential role to the anti-E. anguillarum infection in American eels. Pathogenicity of E. anguillarum to American eels and hub genes related host anti- E. anguillarum infection were firstly reported in this study, shedding new light on our understanding of the E. anguillarum pathogenesis and the host immune response to the E. anguillarum infection strategies in gene transcript.
Collapse
Affiliation(s)
- Yue Wang
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Shaowei Zhai
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Qijuan Wan
- Fisheries College, Jimei University, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
| |
Collapse
|
7
|
Thompson KD, Rodkhum C, Bunnoy A, Thangsunan P, Kitiyodom S, Sukkarun P, Yostawornkul J, Yata T, Pirarat N. Addressing Nanovaccine Strategies for Tilapia. Vaccines (Basel) 2023; 11:1356. [PMID: 37631924 PMCID: PMC10459980 DOI: 10.3390/vaccines11081356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023] Open
Abstract
Tilapia is the world's most extensively farmed species after carp. It is an attractive species for aquaculture as it grows quickly, reaching harvest size within six to seven months of production, and provides an important source of food and revenue for many low-income families, especially in low- to middle-income countries. The expansion of tilapia aquaculture has resulted in an intensification of farming systems, and this has been associated with increased disease outbreaks caused by various pathogens, mostly bacterial and viral agents. Vaccination is routinely used to control disease in higher-value finfish species, such as Atlantic salmon. At the same time, many tilapia farmers are often unwilling to vaccinate their fish by injection once the fish have been moved to their grow-out site. Alternative vaccination strategies are needed to help tilapia farmers accept and use vaccines. There is increasing interest in nanoparticle-based vaccines as alternative methods for delivering vaccines to fish, especially for oral and immersion administration. They can potentially improve vaccine efficacy through the controlled release of antigens, protecting antigens from premature proteolytic degradation in the gastric tract, and facilitating antigen uptake and processing by antigen-presenting cells. They can also allow targeted delivery of the vaccine at mucosal sites. This review provides a brief overview of the bacterial and viral diseases affecting tilapia aquaculture and vaccine strategies for farmed tilapia. It focuses on the use of nanovaccines to improve the acceptance and uptake of vaccines by tilapia farmers.
Collapse
Affiliation(s)
- Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.R.); (P.T.)
| | - Sirikorn Kitiyodom
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Pimwarang Sukkarun
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 90000, Thailand;
| | - Jakarwan Yostawornkul
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (J.Y.); (N.P.)
| |
Collapse
|
8
|
Lin P, Xu M, Yang Q, Chen M, Guo S. Inoculation of Freund's adjuvant in European eel (Anguilla anguilla) revealed key KEGG pathways and DEGs of host anti-Edwardsiella anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108708. [PMID: 36997037 DOI: 10.1016/j.fsi.2023.108708] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Freund's complete (FCA) and incomplete adjuvants (FIA), generally applied in subunit fishery vaccine, have not been explored on the molecular mechanism of the nonspecific immune enhancement. In this study, we examined the RNA-seq in the spleen of European eel (Anguilla anguilla) inoculated with FCA and FIA (FCIA group) to elucidate the key KEGG pathways and differential expressed genes (DEGs) in the process of Edwardsiella anguillarum infection and A. anguilla anti-E. anguillarum infection using genome-wide transcriptome. After eels were challenged by E. anguillarum at 28 d post the first inoculation (dpi), compared to the control uninfected eels (Con group), the control infected eels (Con_inf group) showed severe pathological changes in the liver, kidney and spleen, although infected eels post the inoculation of FCIA (FCIA_inf group) also formed slight bleeding. Compared to the FCIA_inf group, there was more than 10 times colony forming unit (cfu) in the Con_inf group per 100 μg spleen, kidney or blood, and the relative percent survival (RPS) of eels was 44.4% in FCIA_inf vs Con_inf. Compared to the Con group, the SOD activity in the FCIA group increased significantly in the liver and spleen. Using high-throughput transcriptomics, DEGs were identified and 29 genes were verified using fluorescence real-time polymerase chain reaction (qRT-PCR). The result of DEGs clustering showed 9 samples in 3 groups of Con, FCIA and FCIA_inf were similar, contrast to distinct differences of 3 samples in the Con_inf group. We found 3795 up and 3548 down regulated DEGs in the compare of FCIA_inf vs Con_inf, of which 5 enriched KEGG pathways of "Lysosome", "Autophagy", "Apoptosis", "C-type lectin receptor signaling" and "Insulin signaling" were ascertained, and 26 of 30 top GO terms in the compare were significantly enriched. Finally, protein-protein interactions between the DEGs of the 5 KEGG pathways and other DEGs were explored using Cytoscape 3.9.1. The compare of FCIA_inf vs Con_inf showed 110 DEGs from the 5 pathways and 718 DEGs from other pathways formed total of 9747° in a network, of which 9 hub DEGs play vital roles in anti-infection or apoptosis. Together, the interaction networks revealed that 9 DEGs involved in the 5 pathways underlies the key process of A. anguilla anti-E. anguillarum infection or host cell apoptosis.
Collapse
Affiliation(s)
- Peng Lin
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Ming Xu
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Qiuhua Yang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Minxia Chen
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Songlin Guo
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China.
| |
Collapse
|
9
|
Byadgi OV, Rahmawaty A, Wang PC, Chen SC. Comparative genomics of Edwardsiella anguillarum and Edwardsiella piscicida isolated in Taiwan enables the identification of distinctive features and potential virulence factors using Oxford-Nanopore MinION® sequencing. JOURNAL OF FISH DISEASES 2023; 46:287-297. [PMID: 36571326 DOI: 10.1111/jfd.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Edwardsiella tarda (ET) and Edwardsiella anguillarum (EA) are the most harmful bacterial fish pathogens in Taiwan. However, there is confusion regarding the genotypic identification of E. tarda and E. piscicida (EP). Therefore, we used a novel Nanopore MinION MK1C platform to sequence and compare the complete genomes of E. piscicida and E. anguillarum. The number of coding genes, rRNA, and tRNA recorded for E. anguillarum and E. piscicida were 8322, 25, and 98, and 5458, 25, and 98, respectively. Ribosomal multilocus sequence typing (rMLST) for E. piscicida indicated 35 rps. The shared clusters between E. anguillarum and E. piscicida indicated several unique clusters for the individual genomes. The phylogenetic tree analysis for all complete genomes indicated that E. anguillarum and E. piscicida were placed into two species-specific genotypes. Distribution of subsystems for annotated genomes found that genes related to virulence, defence, and disease for E. anguillarum were 103 and those for E. piscicida were 60 and pathogenic islands (PI) were 498 and 225, respectively. Vaccine candidates were identified in silico from the core genes using high antigenic, solubility, and secretion probabilities. Altogether, the genome data revealed distinctive features between E. anguillarum and E. piscicida, which suggest different pathogenicity and thus the need for separate preventive strategies.
Collapse
Affiliation(s)
- Omkar Vijay Byadgi
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Atiek Rahmawaty
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International College, International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
10
|
Zepeda-Velazquez AP, Gómez-De-Anda FR, Aguilar-Mendoza LF, Castrejón-Jiménez NS, Hernández-González JC, Varela-Guerrero JA, de-la-Rosa-Arana JL, Vega-Sánchez V, Reyes-Rodríguez NE. Bullfrogs (Lithobates catesbeianus) as a Potential Source of Foodborne Disease. J Food Prot 2023; 86:100067. [PMID: 36948016 DOI: 10.1016/j.jfp.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/24/2023]
Abstract
In Mexico, bullfrogs (Lithobates catesbeianus) are produced as gourmet food. However, bullfrogs can be carriers of pathogens because the frogs' preferred living conditions occur in stagnant water. The present study aimed to identify bacteria that cause foodborne diseases or are associated with human diseases. For molecular identification, based on the sequential analysis by 16S rRNA or rpoD was conducted on all isolates obtained from bullfrog. A total of 91 bacterial isolates were obtained from bullfrogs; 14 genera and 23 species were identified, including Acinetobacter johnsonii 16.5%; Aeromonas media 14.3%; Aeromonas veronii 13.2%; Providencia rettgeri 7.7%; Citrobacter freundii 6.6%; Aeromonas caviae 4.4%; Aeromonas hydrophila and Elizabethkingia ursingii 3.3%; Pseudomonas stutzeri, Raoultella ornithinolytica, and Shewanella putrefaciens 2.2%; Acinetobacter guillouiae, Acinetobacter pseudolwoffii, Citrobacter portucalensis, Citrobacter werkmanii, Edwardsiella anguillarum, Klebsiella michiganensis, Kluyvera intermedia, Kocuria rosea, Myroides odoratimimus, Myroides odoratus, Proteus sp., and Proteus hauseri 1.1%. In this study, 49.4% of the isolates obtained cause foodborne disease, 19.8% are bacteria that play an important role in the spoilage of food, 5.5% of isolates have nosocomial significance, 13.2% of bacteria are considered to be pollutants of the ecosystem, and in the case of A. salmonicida and Edwardsiella anguillarum (12.1%) to have a negative impact on aquaculture. Acinetobacter pseudolwoffii and Citrobacter portucalensis have not been reported to cause disease. Lastly of these isolates, 97.8% (89/91) can cause disease by food consumption or by direct contact for immunocompromised persons. The presence of these bacteria in bullfrogs represents a significant problem for human health. There is evidence that these microorganisms are pathogenic and frogs may also be reservoirs.
Collapse
Affiliation(s)
- Andrea P Zepeda-Velazquez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Fabián-Ricardo Gómez-De-Anda
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Luis F Aguilar-Mendoza
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Juan Carlos Hernández-González
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Jorge A Varela-Guerrero
- Universidad Autónoma del Estado de México, Centro de Investigación y Estudios Avanzados en Salud Animal (CIESA), Facultad de Medicina Veterinaria y Zootecnia, km 15.5 Carretera Panamericana Toluca-Atlacomulco, Toluca, Estado de México, Mexico.
| | - Jorge-Luis de-la-Rosa-Arana
- Microbiología en Salud Humana, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida 1 de mayo S/N, Campo Uno, Cuautitlán Izcalli, CP 54743 Estado de México, Mexico.
| | - Vicente Vega-Sánchez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| | - Nydia E Reyes-Rodríguez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico.
| |
Collapse
|
11
|
Sugiura H, Fukunishi K, Kawakami H, Imajoh M. Phenotypic differences between Edwardsiella piscicida and Edwardsiella anguillarum isolates in Japan. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:197-207. [PMID: 35959541 DOI: 10.1002/aah.10169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Edwardsiella tarda has been regarded as the causative agent of edwardsiellosis in cultured marine and freshwater fish species in Japan. Our previous study genetically classified an E. tarda-like isolate from diseased Olive Flounder Paralichthys olivaceus as E. piscicida and that from diseased Red Seabream Pagrus major as E. anguillarum. This study aimed to understand the phenotypic differences between E. piscicida and E. anguillarum. METHODS Fourteen E. piscicida and seven E. anguillarum isolates were used in this study. The colonies of each isolate were grown on brain-heart infusion agar plates and then subjected to DNA extraction. The extracted DNA was amplified using PCR. carbohydrate fermentation of the isolates was examined using API 50 CH test kits. Moreover, the growth of the two species was examined in defined media. Also, free amino acids in Olive Flounder and Red Seabream sera were detected and quantified via high-performance liquid chromatography-mass spectrometry. Statistical differences in the concentrations of free amino acids were analyzed using Welch's t-tests. RESULT The API 50 CH test revealed that L-arabinose and D-mannitol were fermented by E. anguillarum isolates but not E. piscicida isolates. Furthermore, the growth of E. piscicida and E. anguillarum was reduced in the defined medium without methionine and iron sulfate. The growth of E. piscicida was reduced in the defined medium without phenylalanine, tyrosine, alanine, or nicotinic acid, whereas the growth of E. anguillarum was reduced in the defined medium without serine, cysteine, leucine, threonine, or isoleucine. Tyrosine and alanine were present in higher concentrations in the Olive Flounder serum, whereas threonine and isoleucine were present in higher concentrations in the Red Seabream serum, suggesting favorable growth conditions for E. piscicida and E. anguillarum. CONCLUSION This study characterizes a minimal defined medium that can be used for developing vaccines against E. piscicida and E. anguillarum.
Collapse
Affiliation(s)
- Hidehiro Sugiura
- Department of Bioresource Production Science, The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
| | - Kosuke Fukunishi
- Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Japan
| | | | - Masayuki Imajoh
- Department of Bioresource Production Science, The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Japan
- Laboratory of Fish Disease, Aquaculture Course, Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
12
|
Rahmawaty A, Chen MY, Byadgi OV, Wang PC, Chen SC. Phenotypic and genotypic analysis of Edwardsiella isolates from Taiwan indicates wide variation with a particular reference to Edwardsiella tarda and Edwardsiella anguillarum. JOURNAL OF FISH DISEASES 2022; 45:1659-1672. [PMID: 35916068 DOI: 10.1111/jfd.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Edwardsiella spp. is a gram-negative, facultatively anaerobic, intracellular bacteria threatening the aquaculture industry worldwide. Noticeably, E. tarda is now genotypically classified into three distinct groups (E. tarda, E. piscicida and E. anguillarum), but morphologically, it is unclear due to varying degrees of virulence in different fish hosts. Hence, to reclassify E. tarda, we investigated differences in genotypes, phenotypes and pathogenicity. We collected Edwardsiella isolates from five different counties of Taiwan between 2017 and 2021. At first, gyrB gene was amplified for a phylogenetic tree from 40 isolates from different fish and one reference isolate, BCRC10670, from the human. Thirty-nine strains clustered into E. anguillarum, 1 strain into E. piscicida and 1 strain into E. tarda from human strain. Second, all isolates were characterized using various phenotypic (API 20E biochemical profiles) and genotypic (pulsed-field gel electrophoresis [PFGE], and virulence-related gene detection). SpeI digestion revealed 10 pulsotypes and I-CeuI into 7 pulsotypes. Virulent genes (citC, gadB, katB, mukF and fimA) confirmed in 35, 31, 28, 37 and 38 isolates, respectively. Finally, in vivo challenge test in milkfish (Chanos chanos) indicated the highest mortality from E. anguillarum. Overall, results revealed unique features with Edwardsiella spp. genotypes and pathogenicity, which are relevant to the host and provide useful insights for future vaccine development.
Collapse
Affiliation(s)
- Atiek Rahmawaty
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mei-Yun Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Omkar Vijay Byadgi
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
13
|
Armwood AR, Griffin MJ, Richardson BM, Wise DJ, Ware C, Camus AC. Pathology and virulence of Edwardsiella tarda, Edwardsiella piscicida, and Edwardsiella anguillarum in channel (Ictalurus punctatus), blue (Ictalurus furcatus), and channel × blue hybrid catfish. JOURNAL OF FISH DISEASES 2022; 45:1683-1698. [PMID: 35880718 PMCID: PMC9796362 DOI: 10.1111/jfd.13691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 05/19/2023]
Abstract
In the mid-2010s, Edwardsiella tarda was reaffiliated into three discrete taxa (E. anguillarum, E. piscicida, and E. tarda), obscuring previous descriptions of E. tarda-induced pathology in fish. To clarify ambiguity regarding the pathology of E. tarda, E. piscicida, and E. anguillarum infections in US farm-raised catfish, channel catfish (Ictalurus punctatus), blue catfish (I. furcatus), and channel × blue catfish hybrids were challenged with comparable doses of each bacterium. The most severe pathology and mortality occurred in fish challenged with E. piscicida, supporting previous reports of increased pathogenicity in commercially important ictalurids, while E. anguillarum and E. tarda warrant only minimal concern. Acute pathologic lesions among bacterial species were predominantly necrotizing and characteristic of gram-negative sepsis but became progressively granulomatous over time. After 100 days, survivors were exposed to the approximate median lethal doses of E. piscicida and E. ictaluri, revealing some cross-protective effects among E. piscicida, E. anguillarum, and E. ictaluri. In contrast, no fish that survived E. tarda challenge demonstrated any protection against E. piscicida or E. ictaluri. This work supports reports of increased susceptibility of channel, blue, and hybrid catfish to E. piscicida, while highlighting potential cross-protective affects among fish associated Edwardsiella spp.
Collapse
Affiliation(s)
- Abigail R. Armwood
- Department of Pathology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Matt J. Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary MedicineMississippi State UniversityStonevilleMississippiUSA
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension CenterMississippi State UniversityStonevilleMississippiUSA
| | - Bradley M. Richardson
- Warmwater Aquaculture Research UnitAgricultural Research Service, United States Department of AgricultureStonevilleMississippiUSA
| | - David J. Wise
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension CenterMississippi State UniversityStonevilleMississippiUSA
- Mississippi Agriculture and Forestry Experiment Station, College of Forest ResourcesMississippi State UniversityStonevilleMississippiUSA
| | - Cynthia Ware
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension CenterMississippi State UniversityStonevilleMississippiUSA
| | - Alvin C. Camus
- Department of Pathology, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
14
|
Elgendy MY, Sherif AH, Kenawy AM, Abdelsalam M. Phenotypic and molecular characterization of the causative agents of edwardsiellosis causing Nile tilapia (Oreochromis niloticus) summer mortalities. Microb Pathog 2022; 169:105620. [PMID: 35690232 DOI: 10.1016/j.micpath.2022.105620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Edwardsiellosis is a serious bacterial disease affecting Nile tilapia (Oreochromis niloticus), causing septicemia and mortalities. Edwardsiella tarda and Edwardsiella anguillarum were isolated from Nile tilapia summer mortality events in Egypt. Diseased fish showed hemorrhagic septicemia, skin erosions, and eye opacity. A total of 24 Edwardsiella spp. isolates were retrieved from the investigated fish specimens. Phenotypic and biochemical characteristics grouped isolates into typical Ed. tarda (n = 14 strains) and atypical Ed. tarda (n = 10 strains). The BLAST analysis of sodB gene sequencing confirmed the conventional identification of typical Ed. tarda strains (n = 14) and reidentified all the atypical strains (n = 10) as Ed. anguillarum. Isolates showed a combination of virulence factors, including biofilm formation (66.6%), hemolysis (100%), chondroitinase (50%), and proteolytic activity (20.8%). The major part of isolates showed high resistance to ampicillin, amoxicillin, gentamycin antibiotics and harbored tetA, blaCTX-M, and aadA1 resistance genes. Pathogenicity testing of isolates in O. niloticus confirmed their virulence. Challenged fish exhibited septicemic signs similar to naturally diseased fish. Infections in naturally infected tilapia triggered acute and chronic histopathological alterations. Degenerative and necrotic changes were noticed in hematopoietic organs. Granulomas were noticed in between the hepatic parenchyma. The data extracted from the study confirm that accurate identification of the causative agents of edwardsiellosis should be reliant on genetic-based approaches. Analysis of the bacterium virulence properties offers insights into establishing novel therapeutics for edwardsiellosis control. The findings refer to the need for antimicrobial sensitivity testing to minimize antimicrobial resistance and increase therapy efficacy.
Collapse
Affiliation(s)
- Mamdouh Y Elgendy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, 12622, Dokki, Cairo, Egypt.
| | - Ahmed H Sherif
- Fish Diseases Department, Animal Health Research Institute AHRI, Agriculture Research Centre ARC, Kafrelsheikh, Egypt
| | - Amany M Kenawy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
15
|
Harikrishnan R, Devi G, Doan HV, Tapingkae W, Balasundaram C, Arockiaraj J, Ringø E. Changes in immune genes expression, immune response, digestive enzymes -antioxidant status, and growth of catla (Catla catla) fed with Astragalus polysaccharides against edwardsiellosis disease. FISH & SHELLFISH IMMUNOLOGY 2022; 121:418-436. [PMID: 35051563 DOI: 10.1016/j.fsi.2022.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/12/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
The effect of four level of Astragalus polysaccharides (APs) supplementation diets, (CD: control diet and three experiment diet (E), EA: 100 mg kg-1 APs; EB: 200 mg kg-1 APs; EC: 300 mg kg-1 APs) on growth, changes in haemato-biochemical parameters and metabolic-digestive enzymes, enhancement of antioxidant activity, innate-adaptive immune response, and cytokine gene expression were studied in catla (Catla catla) against Edwardsiella tarda. The healthy and challenged groups fed the CD displayed no mortality, while fish fed EA or EC revealed 10% mortality, but the mortality was only 5% in diet EB. Fish fed diet EB and EC revealed significantly better growth rates and high RBC count during the experimental period. Albumin and globulin levels were significant improved when fish were fed the diet EB and EC from weeks 6-8. The superoxide dismutase (SOD) was significant ameliorated by EB feeding from weeks 4-8. In contrast, serum myeloperoxidase (MPO), catalase (CAT), malondialdehyde (MDA)/lipid peroxidation (LPO), glutathione peroxidase (GPx), respiratory burst activity (RBA), bactericidal action (BCA), serum lysozyme activity (SLA), nitric oxide synthase (NOS), head kidney leukocytes response proliferation (HKLP), hemolytic action (HLA), hydrogen peroxides (H2O2), and immunoglobulin (Ig) were significantly improved from week 6-8. Groups fed the APs enriched diets had significant ameliorated interleukin (IL)-1β and interferon (IFN)-γ mRNA expression after 6 and 8 weeks of feeding. However, IL-10 and major histocompatibility complex (MHC)-1 mRNA expressions were significant enhanced in catla fed all APs diets on week 8. APs enriched diets revealed significant improved tumor necrosis factor (TNF)-α and TNF receptor-associated factor-6 (TRAF6) mRNA expression on week 4, but toll-like receptor-2 (TLR2) and TLR4 mRNA expression were significant enhanced by diet EB and EC after weeks 6 and 8. Similarly, the lysozyme (Lyz)-C and Lyz-G mRNA levels in the head kidney (HK) increased by APs feeding on weeks 6 and 8, whereas the EB diet, the expression of nucleotide binding oligomerization domain-1 (NOD1) was significantly improved on weeks 6 and 8, but NOD2 mRNA expression was only significant enhanced after 8 weeks of diet EB. By feeding healthy catla and E. tarda challenged fish fed diet EB, resulted in significantly increased growth, haemato-biochemical indices, metabolic-digestive enzymes, antioxidant activities, innate-adaptive immune responses, and cytokine gene expression mainly between 6 and 8 weeks.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innoviative Agriculture Research Centre, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Jesu Arockiaraj
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, 600 097, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT, The Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
16
|
Assane IM, Prada-Mejia KD, Gallani SU, Weiser NF, Valladão GMR, Pilarski F. Enterogyrus spp. (Monogenea: Ancyrocephalinae) and Aeromonas jandaei co-infection associated with high mortality following transport stress in cultured Nile tilapia. Transbound Emerg Dis 2021; 69:e276-e287. [PMID: 34406699 DOI: 10.1111/tbed.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Monogenean infection of the internal organs is extremely rare when compared to external infections. This study describes mass mortality of Nile tilapia (Oreochromis niloticus L.) originating from co-infection with Enterogyrus spp. and Aeromonas jandaei following transport stress. The first fish deaths occurred on day 1 post-transport, while cumulative mortality reached approximately 90% by day 10 post-stocking. An atypical amount of pale (whitish) faeces floating on the surface of the water as well as typical clinical signs of motile Aeromonas septicemia, were reported. Adult monogeneans and countless eggs of monogeneans were found in the stomachs and the intestines of both moribund and dead fish, respectively. Two strains of A. jandaei were isolated from the kidneys. Scanning electron microscope microphotographs of the stomach revealed the presence of numerous monogeneans penetrating deep into the gastric tissue, and diffuse lesions filled with bacilliform bacteria. Histopathological examination showed multifocal eosinophilic infiltrate, gastric gland and epithelial necrosis with sloughed necrotic debris in the lumen. This is the first report of co-infection by Enterogyrus spp. and A. jandaei in Nile tilapia and the first report of Enterogyrus coronatus, Enterogyrus foratus, and Enterogyrus malbergi parasitizing tilapia in Brazil. These findings indicate that synergic co-infection by Monogenean stomach parasites (E. coronatus, E. foratus, and E. malbergi) and A. jandaei may induce high mortalities in tilapia following transport stress.
Collapse
Affiliation(s)
- Inácio Mateus Assane
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil.,Faculdade de Ciências Agrárias, Universidade Zambeze (UniZambeze), Ulónguè, Tete, Mozambique
| | - Karen Dayana Prada-Mejia
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | - Sílvia Umeda Gallani
- Postgraduate Program in Aquaculture, Nilton Lins University, Manaus, Amazonas, Brazil
| | - Natasha Fernandes Weiser
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil
| | | | - Fabiana Pilarski
- Post-graduate program in Aquaculture, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (Unesp), Aquaculture Center of Unesp, Jaboticabal, São Paulo, Brazil.,Graduate Program in Agricultural and Livestock Microbiology, Laboratory of Microbiology and Parasitology of Aquatic Organisms, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| |
Collapse
|