1
|
Zheng J, Lin J, Yang C, Ma Y, Liu P, Li Y, Yang Q. Characteristics of nasal mucosal barrier in lambs at different developmental stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104587. [PMID: 36370908 DOI: 10.1016/j.dci.2022.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The mucosal barriers of a lamb's nasal cavity are composed of a multi-layer barrier designed to protect against the invasion of harmful microorganisms. However, despite the protective measures, respiratory pathogens still infect the sheep from the nasal cavity. Therefore, our study aimed to investigate the characteristics of lamb's nasal cavity barrier at different developmental stages. For nasal histological characteristics, our study revealed that the conchoidal curvature of the inferior nasal conch and the number of glands significantly increased with lamb development. For nasal mucosal barrier characteristics, physical and immune barriers were carefully explored. Initially, we observed that the thickness and proliferative capacity of nasal epithelial significantly increased from fetal to 21 days, which then decreased at 60 days. Then, our study showed that the number of goblet cells (GCs) of 21 days old lamb was significantly higher than in other stages of development. Besides, we found that the number of nasal immune cells, such as dendritic cells, CD3+ T cells, IgA+ B cells, and nasal-associated lymphoid tissue (NALT), were all significantly increased not only from the proximal to distal side in the nasal cavity but also with their age. Totally, our study revealed various characteristics of the mucosal barriers of a lamb's nasal cavity, which provide a reference for explaining the susceptibility of respiratory tract infection in lambs.
Collapse
Affiliation(s)
- Jian Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Chengjie Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Peng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yucheng Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|