1
|
De Biase D, De Leo M, Piegari G, d’Aquino I, Di Napoli E, Mercogliano C, Calabria A, Pula A, Navas L, Russo V, Paciello O. Investigation of the Theragnostic Role of KIT Expression for the Treatment of Canine Mast Cell Tumors with Tyrosine Kinase Inhibitors. Vet Sci 2024; 11:492. [PMID: 39453084 PMCID: PMC11512316 DOI: 10.3390/vetsci11100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Several reports have indicated that canine MCTs express a mutated form of a tyrosine kinase receptor, namely KIT, that is involved in abnormal mast cell growth and differentiation. Currently, the post-surgical prognosis for MCTs is related to three different KIT immunohistochemical expression patterns. However, to our knowledge, there are few studies specifically exploring the efficacy of treatment with tyrosine kinase inhibitors related to KIT staining pattern. The purpose of this study was to investigate the potential theragnostic role of KIT expression patterns by studying their correlation to the overall survival and progression-free survival in dogs treated with only tyrosine kinase inhibitors immediately after surgery. We selected 66 cases of canine cutaneous MCTs with complete clinical background. A statistical analysis was performed to assess the overall survival status. Our data suggest an important role of KIT in the etiopathogenesis of canine MCTs and indicate that the anomalous cytoplasmatic distribution of KIT is potentially related to a lower efficacy of tyrosine kinase inhibitors, thus providing a significant prognostic information about the treatment outcome.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Marcello De Leo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Ilaria d’Aquino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Evaristo Di Napoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Carmela Mercogliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Alfonso Calabria
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Agata Pula
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Luigi Navas
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy (L.N.); (V.R.)
| |
Collapse
|
2
|
Nargan K, Glasgow JN, Nadeem S, Naidoo T, Wells G, Hunter RL, Hutton A, Lumamba K, Msimang M, Benson PV, Steyn AJC. Spatial distribution of Mycobacterium tuberculosis mRNA and secreted antigens in acid-fast negative human antemortem and resected tissue. EBioMedicine 2024; 105:105196. [PMID: 38880068 PMCID: PMC11233921 DOI: 10.1016/j.ebiom.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.
Collapse
Affiliation(s)
- Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Forensic and Legal Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Gordon Wells
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Anneka Hutton
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory Service, IALCH, Durban, South Africa
| | - Paul V Benson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
4
|
Zhao F, Guan Y, Su F, Du Z, Wen S, Zhang L, Jin D. Lanthanide-Complex-Enhanced Bioorthogonal Branched DNA Amplification. Anal Chem 2024; 96:1556-1564. [PMID: 38214216 DOI: 10.1021/acs.analchem.3c04274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used technique for detecting intracellular nucleic acids. However, its effectiveness in detecting low-copy nucleic acids is limited due to its low fluorescence intensity and background autofluorescence. To address these challenges, we present here an approach of lanthanide-complex-enhanced bioorthogonal-branched DNA amplification (LEBODA) with high sensitivity for in situ nuclear acid detection in single cells. The approach capitalizes on two levels of signal amplification. First, it utilizes click chemistry to directly link a substantial number of bridge probes to target-recognizing probes, providing an initial boost in signal intensity. Second, it incorporates high-density lanthanide complexes into each bridge probe, enabling secondary amplifications. Compared to the traditional "double Z" probes used in the RNAscope method, LEBODA exhibits 4 times the single enhancement for RNA detection signal with the click chemistry approach. Using SARS-CoV-2 pseudovirus-infected HeLa cells, we demonstrate the superiority in the detection of viral-infected cells in rare populations as low as 20% infectious rate. More encouragingly, the LEBODA approach can be adapted for DNA-FISH and single-molecule RNA-FISH, as well as other hybridization-based signal amplification methods. This adaptability broadens the potential applications of LEBODA in the sensitive detection of biomolecules, indicating promising prospects for future research and practical use.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Guan
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Fei Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Zhongbo Du
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Dayong Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
5
|
Kułak K, Wojciechowska N, Samelak-Czajka A, Jackowiak P, Bagniewska-Zadworna A. How to explore what is hidden? A review of techniques for vascular tissue expression profile analysis. PLANT METHODS 2023; 19:129. [PMID: 37981669 PMCID: PMC10659056 DOI: 10.1186/s13007-023-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The evolution of plants to efficiently transport water and assimilates over long distances is a major evolutionary success that facilitated their growth and colonization of land. Vascular tissues, namely xylem and phloem, are characterized by high specialization, cell heterogeneity, and diverse cell components. During differentiation and maturation, these tissues undergo an irreversible sequence of events, leading to complete protoplast degradation in xylem or partial degradation in phloem, enabling their undisturbed conductive function. Due to the unique nature of vascular tissue, and the poorly understood processes involved in xylem and phloem development, studying the molecular basis of tissue differentiation is challenging. In this review, we focus on methods crucial for gene expression research in conductive tissues, emphasizing the importance of initial anatomical analysis and appropriate material selection. We trace the expansion of molecular techniques in vascular gene expression studies and discuss the application of single-cell RNA sequencing, a high-throughput technique that has revolutionized transcriptomic analysis. We explore how single-cell RNA sequencing will enhance our knowledge of gene expression in conductive tissues.
Collapse
Affiliation(s)
- Karolina Kułak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
6
|
Nargan K, Naidoo T, Msimang M, Nadeem S, Wells G, Hunter RL, Hutton A, Lumamba K, Glasgow JN, Benson PV, Steyn AJ. Detection of Mycobacterium tuberculosis in human tissue via RNA in situ hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560963. [PMID: 37873458 PMCID: PMC10592959 DOI: 10.1101/2023.10.04.560963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Rationale Accurate TB diagnosis is hampered by the variable efficacy of the widely-used Ziehl-Neelsen (ZN) staining method to identify Mycobacterium tuberculosis ( Mtb ) acid-fast bacilli (AFB). Here, we sought to circumvent this current limitation through direct detection of Mtb mRNA. Objectives To employ RNAscope to determine the spatial distribution of Mtb mRNA within tuberculous human tissue, to appraise ZN-negative tissue from confirmed TB patients, and to provide proof-of-concept of RNAscope as a platform to inform TB diagnosis and Mtb biology. Methods We examined ante- and postmortem human TB tissue using RNAscope to detect Mtb mRNA and a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). Measurements and main results We adapted RNAscope for Mtb and identified intact and disintegrated Mtb bacilli and intra- and extracellular Mtb mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchial epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. Conclusions RNAscope has diagnostic potential and can guide therapeutic intervention as it detects Mtb mRNA and morphology in ZN-negative tissues from TB patients, and Mtb mRNA in ZN-negative antemortem biopsies, respectively. Lastly, our data provide evidence that at least two phenotypically distinct populations of Mtb bacilli exist in vivo .
Collapse
|
7
|
Spencer-Dene B, Mukherjee P, Alex A, Bera K, Tseng WJ, Shi J, Chaney EJ, Spillman DR, Marjanovic M, Miranda E, Boppart SA, Hood SR. Localization of unlabeled bepirovirsen antisense oligonucleotide in murine tissues using in situ hybridization and CARS imaging. RNA (NEW YORK, N.Y.) 2023; 29:1575-1590. [PMID: 37460153 PMCID: PMC10578491 DOI: 10.1261/rna.079699.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023]
Abstract
Current methods for detecting unlabeled antisense oligonucleotide (ASO) drugs rely on immunohistochemistry (IHC) and/or conjugated molecules, which lack sufficient sensitivity, specificity, and resolution to fully investigate their biodistribution. Our aim was to demonstrate the qualitative and quantitative distribution of unlabeled bepirovirsen, a clinical stage ASO, in livers and kidneys of dosed mice using novel staining and imaging technologies at subcellular resolution. ASOs were detected in formalin-fixed paraffin-embedded (FFPE) and frozen tissues using an automated chromogenic in situ hybridization (ISH) assay: miRNAscope. This was then combined with immunohistochemical detection of cell lineage markers. ASO distribution in hepatocytes versus nonparenchymal cell lineages was quantified using HALO AI image analysis. To complement this, hyperspectral coherent anti-Stokes Raman scattering (HS-CARS) imaging microscopy was used to specifically detect the unique cellular Raman spectral signatures following ASO treatment. Bepirovirsen was localized primarily in nonparenchymal liver cells and proximal renal tubules. Codetection of ASO with distinct cell lineage markers of liver and kidney populations aided target cell identity facilitating quantification. Positive liver signal was quantified using HALO AI, with 12.9% of the ASO localized to the hepatocytes and 87.1% in nonparenchymal cells. HS-CARS imaging specifically detected ASO fingerprints based on the unique vibrational signatures following unlabeled ASO treatment in a totally nonperturbative manner at subcellular resolution. Together, these novel detection and imaging modalities represent a significant increase in our ability to detect unlabeled ASOs in tissues, demonstrating improved levels of specificity and resolution. These methods help us understand their underlying mechanisms of action and ultimately improve the therapeutic potential of these important drugs for treating globally significant human diseases.
Collapse
Affiliation(s)
- Bradley Spencer-Dene
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wei-Ju Tseng
- In Vitro/In Vivo Translation, BioImaging, GSK, Upper Providence, Pennsylvania 19426, USA
| | - Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Elena Miranda
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Steve R Hood
- In Vitro/In Vivo Translation, BioImaging, GSK, Stevenage SG1 2NY, United Kingdom
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Gaide N, Crispo M, Jbenyeni A, Bleuart C, Delverdier M, Vergne T, Le Loc’h G, Guérin JL. Validation of an RNAscope assay for the detection of avian influenza A virus. J Vet Diagn Invest 2023; 35:500-506. [PMID: 37334770 PMCID: PMC10467460 DOI: 10.1177/10406387231182385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) is an acute viral disease associated with high mortality and great economic losses. Immunohistochemistry (IHC) is a common diagnostic and research tool for the demonstration of avian influenza A virus (AIAV) antigens within affected tissues, supporting etiologic diagnosis and assessing viral distribution in both naturally and experimentally infected birds. RNAscope in situ hybridization (ISH) has been used successfully for the identification of a variety of viral nucleic acids within histologic samples. We validated RNAscope ISH for the detection of AIAV in formalin-fixed, paraffin-embedded (FFPE) tissues. RNAscope ISH targeting the AIAV matrix gene and anti-IAV nucleoprotein IHC were performed on 61 FFPE tissue sections obtained from 3 AIAV-negative, 16 H5 HPAIAV, and 1 low pathogenicity AIAV naturally infected birds, including 7 species sampled between 2009 and 2022. All AIAV-negative birds were confirmed negative by both techniques. All AIAVs were detected successfully by both techniques in all selected tissues and species. Subsequently, H-score comparison was assessed through computer-assisted quantitative analysis on a tissue microarray comprised of 132 tissue cores from 9 HPAIAV-infected domestic ducks. Pearson correlation of r = 0.95 (0.94-0.97), Lin concordance coefficient of ρc = 0.91 (0.88-0.93), and Bland-Altman analysis indicated high correlation and moderate concordance between the 2 techniques. H-score values were significantly higher with RNAscope ISH compared to IHC for brain, lung, and pancreatic tissues (p ≤ 0.05). Overall, our results indicate that RNAscope ISH is a suitable and sensitive tool for in situ detection of AIAV in FFPE tissues.
Collapse
Affiliation(s)
- Nicolas Gaide
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Manuela Crispo
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Adam Jbenyeni
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Bleuart
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Maxence Delverdier
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Timothée Vergne
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Guillaume Le Loc’h
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Jean-Luc Guérin
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| |
Collapse
|
9
|
Armendariz DA, Sundarrajan A, Hon GC. Breaking enhancers to gain insights into developmental defects. eLife 2023; 12:e88187. [PMID: 37497775 PMCID: PMC10374278 DOI: 10.7554/elife.88187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Despite ground-breaking genetic studies that have identified thousands of risk variants for developmental diseases, how these variants lead to molecular and cellular phenotypes remains a gap in knowledge. Many of these variants are non-coding and occur at enhancers, which orchestrate key regulatory programs during development. The prevailing paradigm is that non-coding variants alter the activity of enhancers, impacting gene expression programs, and ultimately contributing to disease risk. A key obstacle to progress is the systematic functional characterization of non-coding variants at scale, especially since enhancer activity is highly specific to cell type and developmental stage. Here, we review the foundational studies of enhancers in developmental disease and current genomic approaches to functionally characterize developmental enhancers and their variants at scale. In the coming decade, we anticipate systematic enhancer perturbation studies to link non-coding variants to molecular mechanisms, changes in cell state, and disease phenotypes.
Collapse
Affiliation(s)
- Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Anjana Sundarrajan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
- Lyda Hill Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
10
|
Li L, Sun Y, Davis AE, Shah SH, Hamed LK, Wu MR, Lin CH, Ding JB, Wang S. Mettl14-mediated m 6A modification ensures the cell-cycle progression of late-born retinal progenitor cells. Cell Rep 2023; 42:112596. [PMID: 37269288 PMCID: PMC10543643 DOI: 10.1016/j.celrep.2023.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N6-methyladenosine (m6A) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing m6A, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. m6A sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for m6A, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of m6A and potent inhibitor of RPC cell-cycle progression.
Collapse
Affiliation(s)
- Liang Li
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Yue Sun
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA; Department of Neurosurgery, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Alexander E Davis
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Sahil H Shah
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Lobna K Hamed
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Man-Ru Wu
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Cheng-Hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Jun B Ding
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
11
|
Alzu'bi A, Sankar N, Crosier M, Kerwin J, Clowry GJ. Tyramide signal amplification coupled with multiple immunolabeling and RNAScope in situ hybridization in formaldehyde-fixed paraffin-embedded human fetal brain. J Anat 2022; 241:33-41. [PMID: 35224745 PMCID: PMC9178390 DOI: 10.1111/joa.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Several strategies have been recently introduced to improve the practicality of multiple immunolabeling and RNA in situ hybridization protocols. Tyramide signal amplification (TSA) is a powerful method used to improve the detection sensitivity of immunohistochemistry. RNAScope is a novel commercially available in situ hybridization assay for the detection of RNA expression. In this work, we describe the use of TSA and RNAScope in situ hybridization as extremely sensitive and specific methods for the evaluation of protein and RNA expression in formaldehyde-fixed paraffin-embedded human fetal brain sections. These two techniques, when properly optimized, were highly compatible with routine formaldehyde-fixed paraffin-embedded tissue that preserves the best morphological characteristics of delicate fetal brain samples, enabling an unparalleled ability to simultaneously visualize the expression of multiple protein and mRNA of genes that are sparsely expressed in the human fetal telencephalon.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Department of Basic Medical SciencesYarmouk UniversityIrbidJordan
| | - Niveditha Sankar
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Present address:
Department of Biomedical Sciences, School of MedicineUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Moira Crosier
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Human Developmental Biology ResourceNewcastle UniversityNewcastle upon TyneUK
| | - Janet Kerwin
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Human Developmental Biology ResourceNewcastle UniversityNewcastle upon TyneUK
| | - Gavin J. Clowry
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|