1
|
Ge H, Yu Y, Zhang Y, Zhou Z. Changes of bone and articular cartilage in broilers with femoral head necrosis. Poult Sci 2024; 103:104127. [PMID: 39111237 PMCID: PMC11343062 DOI: 10.1016/j.psj.2024.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024] Open
Abstract
Femoral head necrosis (FHN) in broilers is a common leg disorder in intensive poultry farming, giving rise to poor animal health and welfare. Abnormal mechanical stress in the hip joint is a risk factor for FHN, and articular cartilage is attracting increasing attention as a cushion and lubrication structure for the joint. In the present study, broilers aged 3 to 4 wk with FHN were divided into femoral head separation (FHS) and femoral head separation with growth plate lacerations (FHSL) groups, with normal broilers as control. The features of the hip joint, bone, and cartilage were assessed in FHN progression using devices including computed tomography (CT), atomic force microscope (AFM), and transmission electron microscopy (TEM). Broilers with FHN demonstrated decreased bone mechanical properties, narrow joint space, and thickened femoral head stellate structures. Notably, abnormal cartilage morphology was observed in FHN-affected broilers, characterized by increased cartilage thickness and rough cartilage surfaces. In addition, as FHN developed, cartilage surface friction and friction coefficient dramatically increased, while cartilage modulus and stiffness decreased. The ultramicro-damage occurred in chondrocytes and the extracellular matrix (ECM) of cartilage. Cell disintegration, abnormal mitochondrial accumulation, and oxidative stress damage were observed in chondrocytes. A notable decline in cartilage collagen content was observed in ECM during the initial stages of FHN, accompanied by a pronounced reduction in collagen fiber diameter and proteoglycan content as FHN progressed. Furthermore, the noticeable loosening of the collagen fiber structure and the appearance of type I collagen were noted in cartilage. In conclusion, there was a progressive decrease in bone quality and multifaceted damage of cartilage in the femoral head, which was closely linked to the severity of FHN in broilers.
Collapse
Affiliation(s)
- Hongfan Ge
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yaling Yu
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanyan Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenlei Zhou
- Department of Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
2
|
Anthney A, Do ADT, Alrubaye AAK. Bacterial chondronecrosis with osteomyelitis lameness in broiler chickens and its implications for welfare, meat safety, and quality: a review. Front Physiol 2024; 15:1452318. [PMID: 39268189 PMCID: PMC11390708 DOI: 10.3389/fphys.2024.1452318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
The exponential increase in global population continues to present an ongoing challenge for livestock producers worldwide to consistently provide a safe, high-quality, and affordable source of protein for consumers. In the last 50 years, the poultry industry has spearheaded this effort thanks to focused genetic and genomic selection for feed-efficient, high-yielding broilers. However, such intense selection for productive traits, along with conventional industry farming practices, has also presented the industry with a myriad of serious issues that negatively impacted animal health, welfare, and productivity-such as woody breast and virulent diseases commonly associated with poultry farming. Bacterial chondronecrosis with osteomyelitis (BCO) lameness is one such issue, having rapidly become a key issue affecting the poultry industry with serious impacts on broiler welfare, meat quality, production, food safety, and economic losses since its discovery in 1972. This review focuses on hallmark clinical symptoms, diagnosis, etiology, and impact of BCO lameness on key issues facing the poultry industry.
Collapse
Affiliation(s)
- Amanda Anthney
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Anh Dang Trieu Do
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Adnan A K Alrubaye
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
3
|
Adriaensen V, Van Immerseel F, Ducatelle R, Kettunen H, Vuorenmaa J, Goossens E. Enterobacteriaceae and Enterococcaceae are the dominant bacterial families translocating to femur heads in broiler chicks. Avian Pathol 2024; 53:115-123. [PMID: 38096268 DOI: 10.1080/03079457.2023.2288872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
RESEARCH HIGHLIGHTS Large number of bacteria isolated from femoral heads of clinically healthy broilers.The prevailing taxa in femoral heads were Escherichia/Shigella and Enterococcus spp.Continuous presence of bacteria in blood and liver of clinically healthy broilers.Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae prevail in blood and liver.
Collapse
Affiliation(s)
| | | | - Richard Ducatelle
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Evy Goossens
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Choppa VSR, Kim WK. A Review on Pathophysiology, and Molecular Mechanisms of Bacterial Chondronecrosis and Osteomyelitis in Commercial Broilers. Biomolecules 2023; 13:1032. [PMID: 37509068 PMCID: PMC10377700 DOI: 10.3390/biom13071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Ramser A, Hawken R, Greene E, Okimoto R, Flack B, Christopher CJ, Campagna SR, Dridi S. Bone Metabolite Profile Differs between Normal and Femur Head Necrosis (FHN/BCO)-Affected Broilers: Implications for Dysregulated Metabolic Cascades in FHN Pathophysiology. Metabolites 2023; 13:metabo13050662. [PMID: 37233703 DOI: 10.3390/metabo13050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Femur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of -1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, AR 72761, USA
| | | | | | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Cook J, Greene ES, Ramser A, Mullenix G, Dridi JS, Liyanage R, Wideman R, Dridi S. Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness. Sci Rep 2023; 13:5947. [PMID: 37045932 PMCID: PMC10097873 DOI: 10.1038/s41598-023-33060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.
Collapse
Affiliation(s)
- Jennifer Cook
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Garrett Mullenix
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Jalila S Dridi
- École Universitaire de Kinésithérapie, Université d'Orléans, Rue de Chartres, 45100, Orléans, France
| | - Rohana Liyanage
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Robert Wideman
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Mendelsohn DH, Niedermair T, Walter N, Alt V, Rupp M, Brochhausen C. Ultrastructural Evidence of Mitochondrial Dysfunction in Osteomyelitis Patients. Int J Mol Sci 2023; 24:5709. [PMID: 36982790 PMCID: PMC10053973 DOI: 10.3390/ijms24065709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Osteomyelitis is a difficult-to-treat disease with high chronification rates. First studies suggest increases in mitochondrial fission and mitochondrial dysfunction as possible contributors to the accumulation of intracellular reactive oxygen species and thereby to the cell death of infected bone cells. The aim of the present study is to analyze the ultrastructural impact of bacterial infection on osteocytic and osteoblastic mitochondria. Human infected bone tissue samples were visualized via light microscopy and transmission electron microscopy. Osteoblasts, osteocytes and their mitochondria were analyzed histomorphometrically and compared with the control group of noninfectious human bone tissue samples. The results depicted swollen hydropic mitochondria including depleted cristae and a decrease in matrix density in the infected samples. Furthermore, perinuclear clustering of mitochondria could also be observed regularly. Additionally, increases in relative mitochondrial area and number were found as a correlate for increased mitochondrial fission. In conclusion, mitochondrial morphology is altered during osteomyelitis in a comparable way to mitochondria from hypoxic tissues. This gives new perspectives on the treatment strategies since the manipulation of mitochondrial dynamics may improve bone cell survival as a potential new target for the therapy of osteomyelitis.
Collapse
Affiliation(s)
- Daniel H. Mendelsohn
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Tompkins YH, Liu G, Kim WK. Impact of exogenous hydrogen peroxide on osteogenic differentiation of broiler chicken compact bones derived mesenchymal stem cells. Front Physiol 2023; 14:1124355. [PMID: 36776980 PMCID: PMC9909420 DOI: 10.3389/fphys.2023.1124355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The effects of hydrogen peroxide (H2O2) on the osteogenic differentiation of primary chicken mesenchymal stem cells (MSCs) were investigated. MSCs were subjected to an osteogenic program and exposed to various concentrations of H2O2 for 14 days. Results showed that high concentrations of H2O2 (200 and 400 nM) significantly increased pro-apoptotic marker CASP8 expression and impaired osteogenic differentiation, as indicated by decreased mRNA expression levels of osteogenesis-related genes and reduced in vitro mineralization. In contrast, long-term H2O2 exposure promoted basal expression of adipogenic markers at the expense of osteogenesis in MSCs during osteogenic differentiation, and increased intracellular reactive oxygen species (ROS) production, as well as altered antioxidant enzyme gene expression. These findings suggest that long-term H2O2-induced ROS production impairs osteogenic differentiation in chicken MSCs under an osteogenic program.
Collapse
|
9
|
Ramser A, Greene E, Rath N, Dridi S. Primary growth plate chondrocyte isolation, culture, and characterization from the modern broiler. Poult Sci 2022; 102:102254. [PMID: 36370660 PMCID: PMC9660625 DOI: 10.1016/j.psj.2022.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Lameness is a leading cause of animal welfare and production concerns for the poultry industry as fast-growing, high-yielding broilers seem more susceptible to bone disease and infections. A major limitation to the study of these disorders is the lack of a chicken immortalized chondrocyte cell. Primary cell isolation is a valid and complex method for establishing a relevant in vitro model for diseases. In this study, isolation and high-density culturing of primary chondrocytes form 1-d old chicks was followed by confirmation of cell type, identification of optimal phenotypic expression, and evaluation of cells functionality. mRNA expression, as well as protein production and secretion, of COLI, COLII, Sox9, ACAN, and COLXA1 on day 3 (d3), d7, d11, d14, d18, and d21 in culture showed that avian growth plate chondrocytes under these conditions exhibit optimal phenotypes from d3 to d7. This is evident by a shift from COLII dominant expression in early-culture to COLI dominant expression by late-culture in conjunction with a loss of other chondrocyte markers Sox9, ACAN, and COLXA1. Additionally, morphological changes seen through live cell imaging coincide with the shift of phenotype in mid- to late-culture periods indicating a dedifferentiated phenotype. The functionality of the cultured cells was confirmed using Brefeldin-A treatment which significantly reduced secretion of COLII by d7 chondrocytes. These results provide a foundation for future research utilizing avian primary chondrocytes with optimal phenotypes for disease modeling or passaging.
Collapse
Affiliation(s)
- Alison Ramser
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA,University of Arkansas, Cell and Molecular Biology, Fayetteville, AR 72701, USA
| | - Elizabeth Greene
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA
| | - Narayan Rath
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA,Poultry Production and Product Safety Research, USDA/ARS, Fayetteville, AR 72701, USA
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA,University of Arkansas, Cell and Molecular Biology, Fayetteville, AR 72701, USA,Corresponding author:
| |
Collapse
|
10
|
Mendelsohn DH, Schnabel K, Mamilos A, Sossalla S, Pabel S, Duerr GD, Keller K, Schmitt VH, Barsch F, Walter N, Wong RMY, El Khassawna T, Niedermair T, Alt V, Rupp M, Brochhausen C. Structural Analysis of Mitochondrial Dynamics-From Cardiomyocytes to Osteoblasts: A Critical Review. Int J Mol Sci 2022; 23:4571. [PMID: 35562962 PMCID: PMC9101187 DOI: 10.3390/ijms23094571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Mitochondria play a crucial role in cell physiology and pathophysiology. In this context, mitochondrial dynamics and, subsequently, mitochondrial ultrastructure have increasingly become hot topics in modern research, with a focus on mitochondrial fission and fusion. Thus, the dynamics of mitochondria in several diseases have been intensively investigated, especially with a view to developing new promising treatment options. However, the majority of recent studies are performed in highly energy-dependent tissues, such as cardiac, hepatic, and neuronal tissues. In contrast, publications on mitochondrial dynamics from the orthopedic or trauma fields are quite rare, even if there are common cellular mechanisms in cardiovascular and bone tissue, especially regarding bone infection. The present report summarizes the spectrum of mitochondrial alterations in the cardiovascular system and compares it to the state of knowledge in the musculoskeletal system. The present paper summarizes recent knowledge regarding mitochondrial dynamics and gives a short, but not exhaustive, overview of its regulation via fission and fusion. Furthermore, the article highlights hypoxia and its accompanying increased mitochondrial fission as a possible link between cardiac ischemia and inflammatory diseases of the bone, such as osteomyelitis. This opens new innovative perspectives not only for the understanding of cellular pathomechanisms in osteomyelitis but also for potential new treatment options.
Collapse
Affiliation(s)
- Daniel H. Mendelsohn
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Katja Schnabel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
| | - Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (S.P.)
| | - Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (S.P.)
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany;
| | - Karsten Keller
- Department of Cardiology, Cardiology I, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany; (K.K.); (V.H.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, Cardiology I, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany; (K.K.); (V.H.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Nike Walter
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China;
| | - Thaqif El Khassawna
- Department of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35390 Giessen, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Ramser A, Greene E, Alrubaye AA, Wideman R, Dridi S. Role of Autophagy Machinery Dysregulation in Bacterial Chondronecrosis with Osteomyelitis (BCO). Poult Sci 2022; 101:101750. [PMID: 35278754 PMCID: PMC8914211 DOI: 10.1016/j.psj.2022.101750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a cell survival and homeostasis mechanism involving lysosomal degradation of cellular components and foreign bodies. It plays a role in bone homeostasis, skeletal diseases, and bacterial infections as both a cell-survival or cell-death pathway. This study sought to determine if autophagy played a role in bacterial chondronecrosis with osteomyelitis (BCO). BCO is a prominent cause of lameness in modern broilers and results from bacterial infection of mechanically stressed leg bone growth plates. The protein and gene expression of key autophagy machinery was analyzed in both normal and BCO-affected broilers using real-time qPCR and immunoblot, respectively. Gene expression showed a significant downregulation of key target signatures involved in every stage of autophagy in BCO-affected bone, such as ATG13, SQSTM1 (p62), ATG9B, ATG16L, ATG12, LC3C, and RAB7A. Additionally, protein expression for LC3 was also significantly lower in BCO. An in vitro study using human fetal osteoblast cells challenged with BCO isolate, Staphylococcus agnetis 908, showed a similar dysregulation of autophagy machinery along with a significant decrease in cell viability. When autophagy was inhibited via 3-methyladenine or chloroquine, comparable decreases in cell viability were seen along with dysregulation of autophagy machinery. Together, these results are the first to implicate autophagy machinery dysregulation in the pathology of BCO.
Collapse
|
12
|
Xiong Z, Xing C, Xu T, Yang Y, Liu G, Hu G, Cao H, Zhang C, Guo X, Yang F. Vanadium Induces Oxidative Stress and Mitochondrial Quality Control Disorder in the Heart of Ducks. Front Vet Sci 2021; 8:756534. [PMID: 34765669 PMCID: PMC8577801 DOI: 10.3389/fvets.2021.756534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Vanadium (V) is an ultra-trace element presenting in humans and animals, but excessive V can cause toxic effects. Mitochondrial quality control (MQC) is an essential process for maintaining mitochondrial functions, but the relationship between V toxicity and MQC is unclear. To investigate the effects of excessive V on oxidative stress and MQC in duck hearts, 72 ducks were randomly divided into two groups, including the control group and the V group (30 mg of V/kg dry matter). The cardiac tissues were collected for the histomorphology observation and oxidative stress status evaluation at 22 and 44 days. In addition, the mRNA and protein levels of MQC-related factors were also analyzed. The results showed that excessive V could trigger vacuolar degeneration, granular degeneration, as well as mitochondrial vacuolization and swelling in myocardial cells. In addition, CAT activity was elevated in two time points, while T-SOD activity was increased in 22 days but decreased in 44 days after V treatment. Meanwhile, excessive V intake could also increase the number of Drp1 puncta, the mRNA levels of mitochondrial fission–related factors (Drp1and MFF), and protein (MFF) level, but decrease the number of Parkin puncta and the mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM), mitochondrial fusion (OPA1, Mfn1, and Mfn2), and mitophagy (Parkin, PINK1, P62, and LC3B) related mRNA levels and protein (PGC-1α, Mfn1, Mfn2, PINK1) levels. Collectively, our results suggested that excessive V could induce oxidative stress and MQC disorder in the heart of ducks.
Collapse
Affiliation(s)
- Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Yan Yang
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Guohui Liu
- Ganzhou Agriculture and Rural Affairs, Ganzhou, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|