1
|
Ito S, Bosch J, Aguilar-Vega C, Jeong H, Sánchez-Vizcaíno JM. Geospatial analysis for strategic wildlife disease surveillance: African swine fever in South Korea (2019-2021). PLoS One 2024; 19:e0305702. [PMID: 38905303 PMCID: PMC11192348 DOI: 10.1371/journal.pone.0305702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
Since the confirmation of African swine fever (ASF) in South Korea in 2019, its spread, predominantly in wild boars, has been a significant concern. A key factor in this situation is the lack of identification of risk factors by surveillance bias. The unique orography, characterized by high mountains, complicates search efforts, leading to overlooked or delayed case detection and posing risks to the swine industry. Additionally, shared rivers with neighboring country present a continual threat of virus entry. This study employs geospatial analysis and statistical methods to 1) identify areas at high risk of ASF occurrence but possibly under-surveilled, and 2) indicate strategic surveillance points for monitoring the risk of ASF virus entry through water bodies and basin influences. Pearson's rho test indicated that elevation (rho = -0.908, p-value < 0.001) and distance from roads (rho = -0.979, p-value < 0.001) may have a significant impact on limiting surveillance activities. A map of potential under-surveilled areas was created considering these results and was validated by a chi-square goodness-of-fit test (X-square = 208.03, df = 1, p-value < 0.001). The strong negative correlation (rho = -0.997, p-value <0.001) between ASF-positive wild boars and distance from water sources emphasizes that areas surrounding rivers are one of the priority areas for monitoring. The subsequent hydrological analyses provided important points for monitoring the risk of virus entry via water from the neighboring country. This research aims to facilitate early detection and prevent further spread of ASF.
Collapse
Affiliation(s)
- Satoshi Ito
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- South Kyushu Livestock Veterinary Medicine Center, Kagoshima University, Kagoshima, Japan
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Cecilia Aguilar-Vega
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Jose Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Umhang G, Frantz AC, Ferté H, Fournier Chambrillon C, Gautrelet M, Gritti T, Thenon N, Le Loc'h G, Isère-Laoué E, Egal F, Caillot C, Lippert S, Heddergott M, Fournier P, Richomme C. Surveys on Baylisascaris procyonis in two of the three French wild raccoon populations. Int J Parasitol Parasites Wildl 2024; 23:100928. [PMID: 38586580 PMCID: PMC10998084 DOI: 10.1016/j.ijppaw.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Human infection by Baylisascaris procyonis can result in larva migrans syndromes, which can cause severe neurological sequelae and fatal cases. The raccoon serves as the definitive host of the nematode, harboring adult worms in its intestine and excreting millions of eggs into the environment via its feces. Transmission to paratenic hosts (such as rodents, birds and rabbits) or to humans occurs by accidental ingestion of eggs. The occurrence of B. procyonis in wild raccoons has been reported in several Western European countries. In France, raccoons have currently established three separate and expanding populations as a result of at least three independent introductions. Until now the presence of B. procyonis in these French raccoon populations has not been investigated. Between 2011 and 2021, 300 raccoons were collected from both the south-western and north-eastern populations. The core parts of the south-western and north-eastern French raccoon populations were free of B. procyonis. However, three worms (molecularly confirmed) were detected in a young raccoon found at the edge of the north-eastern French raccoon population, close to the Belgian and Luxemburg borders. Population genetic structure analysis, genetic exclusion tests and factorial correspondence analysis all confirmed that the infected raccoon originated from the local genetic population, while the same three approaches showed that the worms were genetically distinct from the two nearest known populations in Germany and the Netherlands. The detection of an infected raccoon sampled east of the northeastern population raises strong questions about the routes of introduction of the roundworms. Further studies are required to test wild raccoons for the presence of B. procyonis in the area of the index case and further east towards the border with Germany.
Collapse
Affiliation(s)
- Gérald Umhang
- ANSES Nancy Laboratory for Rabies and Wildlife, National Reference Laboratory for Echinococcus spp., Malzeville, France
| | | | - Hubert Ferté
- Université de Reims Champagne–Ardenne, Reims, France
| | | | - Manon Gautrelet
- Université de Reims Champagne–Ardenne, Reims, France
- GREGE, Villandraut, France
| | | | | | | | | | - Fabien Egal
- Association Départementale des Piégeurs Agréés de Gironde, Mongauzy, France
| | - Christophe Caillot
- ANSES Nancy Laboratory for Rabies and Wildlife, National Reference Laboratory for Echinococcus spp., Malzeville, France
| | | | | | | | - Céline Richomme
- ANSES Nancy Laboratory for Rabies and Wildlife, National Reference Laboratory for Echinococcus spp., Malzeville, France
| |
Collapse
|
3
|
Management of a Focal Introduction of ASF Virus in Wild Boar: The Belgian Experience. Pathogens 2023; 12:pathogens12020152. [PMID: 36839424 PMCID: PMC9961158 DOI: 10.3390/pathogens12020152] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
African swine fever (ASF) is a fatal disease of suids that was detected in wild boar in Belgium in September 2018. The measures implemented to stop the spread and eliminate the African swine fever virus consisted of creating restriction zones, organising efficient search and removal of carcasses, constructing wire fences, and depopulating wild boar in the area surrounding the infected zone. The ASF management zone included the infected and the white zones and covered 1106 km² from which 7077 wild boar have been removed. A total of 5338 wild boars have been qPCR-tested and 833 have been detected ASF-positive. The search effort amounted to 60,631 h with a main focus on the infected zone (88%). A total of 277 km of fences have been set up. The main cause of mortality in the infected zone was the virus itself, while hunting, trapping, and night shooting were used together to reduce the wild boar density in the surrounding white zones. After continuous dispersion of the virus until March 2019, the epidemic wave stopped, and the last fresh positive case was discovered in August 2019. Hence, Belgium was declared free of the disease in November 2020.
Collapse
|
4
|
Loi F, Di Sabatino D, Baldi I, Rolesu S, Gervasi V, Guberti V, Cappai S. Estimation of R 0 for the Spread of the First ASF Epidemic in Italy from Fresh Carcasses. Viruses 2022; 14:2240. [PMID: 36298795 PMCID: PMC9607429 DOI: 10.3390/v14102240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 10/29/2023] Open
Abstract
After fifty years of spread in the European continent, the African swine fever (ASF) virus was detected for the first time in the north of Italy (Piedmont) in a wild boar carcass in December, 2021. During the first six months of the epidemic, the central role of wild boars in disease transmission was confirmed by more than 200 outbreaks, which occurred in two different areas declared as infected. The virus entered a domestic pig farm in the second temporal cluster identified in the center of the country (Lazio). Understanding ASF dynamics in wild boars is a prerequisite for preventing the spread, and for designing and applying effective surveillance and control plans. The aim of this work was to describe and evaluate the data collected during the first six months of the ASF epidemic in Italy, and to estimate the basic reproduction number (R0) in order to quantify the extent of disease spread. The R0 estimates were significantly different for the two spatio-temporal clusters of ASF in Italy, and they identified the two infected areas based on the time necessary for the number of cases to double (td) and on an exponential decay model. These results (R0 = 1.41 in Piedmont and 1.66 in Lazio) provide quantitative knowledge on the epidemiology of ASF in Italy. These parameters could represent a fundamental tool for modeling country-specific ASF transmission and for monitoring both the spread and sampling effort needed to detect the disease early.
Collapse
Affiliation(s)
- Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy
| | - Daria Di Sabatino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy
| | - Ileana Baldi
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy
| | - Sandro Rolesu
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Vincenzo Gervasi
- Institute for Environmental Protection and Research (ISPRA), 00144 Roma, Italy
| | - Vittorio Guberti
- Institute for Environmental Protection and Research (ISPRA), 00144 Roma, Italy
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale della Sardegna, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| |
Collapse
|
5
|
Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool. Viruses 2022; 14:v14071424. [PMID: 35891404 PMCID: PMC9319840 DOI: 10.3390/v14071424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
African swine fever (ASF) is a devastating disease, resulting in the high mortality of domestic and wild pigs, spreading quickly around the world. Ensuring the prevention and early detection of the disease is even more crucial given the absence of licensed vaccines. As suggested by the European Commission, those countries which intend to provide evidence of freedom need to speed up passive surveillance of their wild boar populations. If this kind of surveillance is well-regulated in domestic pig farms, the country-specific activities to be put in place for wild populations need to be set based on wild boar density, hunting bags, the environment, and financial resources. Following the indications of the official EFSA opinion 2021, a practical interpretation of the strategy was implemented based on the failure probabilities of wrongly declaring the freedom of an area even if the disease is still present but undetected. This work aimed at providing a valid, applicative example of an exit strategy based on two different approaches: the first uses the wild boar density to estimate the number of carcasses need to complete the exit strategy, while the second estimates it from the number of wild boar hunted and tested. A practical free access tool, named WBC-Counter, was developed to automatically calculate the number of needed carcasses. The practical example was developed using the ASF data from Sardinia (Italian island). Sardinia is ASF endemic from 43 years, but the last ASFV detection dates back to 2019. The island is under consideration for ASF eradication declaration. The subsequent results provide a practical example for other countries in approaching the EFSA exit strategy in the best choices for its on-field application.
Collapse
|