1
|
Gruening de Mattos PB, Porto de Souza Vandenberghe L, Valladares-Diestra KK, Ramos Neyra LC, Vieira S, Júnior Letti LA, Soccol CR. Recent developments in xylooligosaccharides: Sustainable production, characterization, beneficial properties and applications. Food Res Int 2024; 197:115206. [PMID: 39593291 DOI: 10.1016/j.foodres.2024.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Xylooligosaccharides (XOS) are functional oligosaccharides with prebiotic activity, offering exceptional nutritional and health benefits and a wide range of applications. The increasing market demand for healthy products has driven interest in XOS, as they are low-dose prebiotics with high added value, fostering developments in their production. In a sustainable production context, XOS can be obtained from low-cost lignocellulosic raw materials, which require adapted pretreatment techniques to produce high-quality XOS with high process efficiency. One- and two-step methodologies are discussed in terms of increasing XOS production while aiming to limit the co-production of toxic compounds. Autohydrolysis and enzymatic hydrolysis with xylanases stand out as a promising technology for XOS production with high yields. Purification and characterization methodologies are also two important steps to achieve mixtures of XOS with high purity, specific degree of polymerization and substitution to improve their beneficial properties and, consequently, their applications. This review presents the potential of XOS as prebiotics, describing the recent technological production routes, along with advancements in the development of new production processes using alternative substrates, as well as the beneficial effects of their consumption, addressing their latest applications that justify the pursuit of their consolidation in the industrial prebiotic market.
Collapse
Affiliation(s)
- Patrícia Beatriz Gruening de Mattos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Kim Kley Valladares-Diestra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Lucia Carolina Ramos Neyra
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Sabrina Vieira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luiz Alberto Júnior Letti
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
2
|
Das R, Mishra P, Mishra B, Jha R. Effect of in ovo feeding of xylobiose and xylotriose on plasma immunoglobulin, cecal metabolites production, microbial ecology, and metabolic pathways in broiler chickens. J Anim Sci Biotechnol 2024; 15:62. [PMID: 38702804 PMCID: PMC11069197 DOI: 10.1186/s40104-024-01022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/06/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Dietary supplementation of xylooligosaccharides (XOS) has been found to influence gut health by manipulating cecal microbiota and producing microbe-origin metabolites. But no study investigated and compared the effect of in ovo feeding of xylobiose (XOS2) and xylotriose (XOS3) in chickens. This study investigated the effect of in ovo feeding of these XOS compounds on post-hatch gut health parameters in chickens. A total of 144 fertilized chicken eggs were divided into three groups: a) non-injected control (CON), b) XOS2, and c) XOS3. On the 17th embryonic day, the eggs of the XOS2 and XOS3 groups were injected with 3 mg of XOS2 and XOS3 diluted in 0.5 mL of 0.85% normal saline through the amniotic sac. After hatching, the chicks were raised for 21 d. Blood was collected on d 14 to measure plasma immunoglobulin. Cecal digesta were collected for measuring short-chain fatty acids (SCFA) on d 14 and 21, and for microbial ecology and microbial metabolic pathway analyses on d 7 and 21. RESULTS The results were considered significantly different at P < 0.05. ELISA quantified plasma IgA and IgG on d 14 chickens, revealing no differences among the treatments. Gas chromatography results showed no significant differences in the concentrations of cecal SCFAs on d 14 but significant differences on d 21. However, the SCFA concentrations were lower in the XOS3 than in the CON group on d 21. The cecal metagenomics data showed that the abundance of the family Clostridiaceae significantly decreased on d 7, and the abundance of the family Oscillospiraceae increased on d 21 in the XOS2 compared to the CON. There was a reduction in the relative abundance of genus Clostridium sensu stricto 1 in the XOS2 compared to the CON on d 7 and the genus Ruminococcus torques in both XOS2 and XOS3 groups compared to the CON on d 21. The XOS2 and XOS3 groups reduced the genes for chondroitin sulfate degradation I and L-histidine degradation I pathways, which contribute to improved gut health, respectively, in the microbiome on d 7. In contrast, on d 21, the XOS2 and XOS3 groups enriched the thiamin salvage II, L-isoleucine biosynthesis IV, and O-antigen building blocks biosynthesis (E. coli) pathways, which are indicative of improved gut health. Unlike the XOS3 and CON, the microbiome enriched the pathways associated with energy enhancement, including flavin biosynthesis I, sucrose degradation III, and Calvin-Benson-Bassham cycle pathways, in the XOS2 group on d 21. CONCLUSION In ovo XOS2 and XOS3 feeding promoted beneficial bacterial growth and reduced harmful bacteria at the family and genus levels. The metagenomic-based microbial metabolic pathway profiling predicted a favorable change in the availability of cecal metabolites in the XOS2 and XOS3 groups. The modulation of microbiota and metabolic pathways suggests that in ovo XOS2 and XOS3 feeding improved gut health during the post-hatch period of broilers.
Collapse
Affiliation(s)
- Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Liu G, Sun W, Zhang R, Shen F, Jia G, Zhao H, Chen X, Wang J. Dietary xylo-oligosaccharides alleviates LPS-induced intestinal injury via endoplasmic reticulum-mitochondrial system pathway in piglets. J Anim Sci 2024; 102:skae238. [PMID: 39155504 PMCID: PMC11416883 DOI: 10.1093/jas/skae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
The beneficial effects of xylo-oligosaccharides (XOS) on the intestine have been widely reported, including anti-inflammation, antioxidant, maintenance of intestinal epithelial barrier, and treatment of intestinal injury. However, the specific mechanism of XOS in mitigating intestinal injury in weaned piglets remains unclear. Therefore, this study aimed to explore the specific mechanism of XOS in mitigating intestinal injury. The study is a complete randomized design with 24 weaned piglets in a 2 × 2 factorial arrangement that includes diet treatments (basal diet vs. 0.02% XOS) and immunological challenge [saline vs. lipopolysaccharide (LPS)]. All piglets were fed a basal diet or a XOS diet for 21 d. On day 22, all piglets received an injection of LPS or saline. In this study, dietary XOS increased jejunal villus height, reduced crypt depth and oxidative stress, and enhanced the gene and protein expression of Claudin-1, Occludin, and zonula occludens 1 (P < 0.05). The piglets fed the XOS diet had lower serum Diamine oxidase activity and d-lactic acid content (P < 0.05). In addition, dietary XOS regulates endoplasmic reticulum (ER)-mitochondria system function and the expression of key molecules, including mitochondrial dynamics dysfunction [mitofusin (Mfn)-1, optic atrophy 1, fission 1, and dynamin-related protein 1], ER stress [activating transcription factor 4 (ATF4), ATF6, C/EBP-homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, GRP94, and protein kinase R-like ER kinase] and the mitochondria-associated ER membranes (MAM) disorders (Mfn2, GRP75, and voltage-dependent anion channel 1) (P < 0.05). Therefore, the findings to indicate that dietary XOS is effective against LPS-induced jejunal injury may be attributed to its ability to alleviate mitochondrial dynamics dysfunction, ER stress, and MAM disorders.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Weixiao Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Wang Q, Zhao Y, Guo L, Ma X, Yang Y, Zhuo Y, Jiang X, Hua L, Che L, Xu S, Feng B, Fang Z, Li J, Lin Y, Wu D. Xylo-oligosaccharides improve the adverse effects of plant-based proteins on weaned piglet health by maintaining the intestinal barrier and inhibiting harmful bacterial growth. Front Microbiol 2023; 14:1189434. [PMID: 37303802 PMCID: PMC10249996 DOI: 10.3389/fmicb.2023.1189434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Piglets are more susceptible to weaning stress syndrome when fed high levels of plant-based proteins that contain abundant food antigens and anti-nutritional factors. Xylo-oligosaccharides (XOS) are a potential prebiotic that may improve the tolerance of weaned piglets to plant-based proteins. The aim of this study was to investigate the effects of XOS supplementation in high and low plant-based protein diets on growth performance, gut morphology, short-chain fatty acid (SCFA) production, and gut microbiota of weaned piglets. Methods A total of 128 weanling piglets with an average body weight (BW) of 7.63 ± 0.45 kg were randomly allocated to one of the four dietary treatments in a 2 × 2 factorial arrangement, with two levels of plant-based proteins (d 1-14: 68.3 or 81.33%, d 15-28: 81.27 or 100%) and XOS complex (0 or 0.43%) over a 28-day trial. Results The growth performance of piglets did not differ significantly among groups (P > 0.05). However, the diarrhea index of weaned piglets fed a high plant-based protein diet (HP) was significantly higher than that of those fed a low plant-based protein diet (LP) at days 1-14 and throughout the experimental period (P < 0.05). XOS treatment tended to reduce the diarrhea index at days 1-14 (P = 0.062) and during the whole experiment period (P = 0.083). However, it significantly increased the digestibility of organic matter at days 15-28 (P < 0.05). Moreover, dietary XOS supplementation increased ileal mucosa mRNA expression of occludin and ZO-1 (P < 0.05). Furthermore, the concentration of butyric acid (BA) in the cecal contents and in the concentrations of BA and valeric acid (VA) in colon contents were significantly elevated in the XOS groups (P < 0.05). Additionally, XOS optimized the gut flora by lowering the number of pathogenic bacteria such as p_Campylobacterota, thereby stabilizing the gut ecosystem. Discussion In conclusion, the HP diet aggravated diarrhea in weaned piglets while the XOS diet alleviated it by improving nutrient digestibility, protecting intestinal morphology, and optimizing the gut flora.
Collapse
|
5
|
Sun F, Li H, Sun Z, Liu L, Zhang X, Zhao J. Effect of Arabinoxylan and Xylo-Oligosaccharide on Growth Performance and Intestinal Barrier Function in Weaned Piglets. Animals (Basel) 2023; 13:ani13060964. [PMID: 36978506 PMCID: PMC10044045 DOI: 10.3390/ani13060964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to explore the effects of xylose with different polymerizations on growth performance, intestinal barrier function, and gut microbial composition in weaned piglets. A total of 144 weaned piglets were assigned to 3 dietary treatments in a completely randomized design according to their body weight and sex. Dietary treatments included a corn-soybean meal basal diet (CON) and 2 additional diets formulated with 1% arabinoxylan (AX) and 1% xylo-oligosaccharide (XOS), respectively. Results showed that dietary supplementation of XOS or AX reduced diarrhea incidence of weaned piglets compared with the CON group (p < 0.05). XOS or AX increased the ileal villus height and intestinal activity of antioxidases in weaned piglets compared with the CON group (p < 0.05). XOS or AX reduced the ileal and colonic IL-6 content and increased the colonic sIgA and IL-10 concentrations in weaned piglets compared with the CON group (p < 0.05). XOS or AX increased the total organic acids concentrations in the ileum and in vitro fermentation (p < 0.05). XOS increased the abundance of Lactobacillus and Bifidobacterium in the ileal digesta (p < 0.05), while AX increased the population of Lactobacillus in the ileal digesta and the abundance of Bifidobacterium in the colonic digesta of weaned piglets (p < 0.05). In conclusion, both XOS and AX reduce diarrhea incidence and improve antioxidant capacity, immune function, and populations of beneficial bacteria, while microbial fermentation of XOS with a lower polymerization and molecular mass can produce more organic acids and an increased abundance of Lactobacillus and Bifidobacterium in the upper gut of weaned pigs compared with AX.
Collapse
Affiliation(s)
- Feize Sun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Huahui Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiujun Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Early weaning leads to the remodeling of lipid profile in piglet jejunal crypt cells during post-weaning days. ANIMAL NUTRITION 2022; 11:102-111. [PMID: 36189377 PMCID: PMC9489526 DOI: 10.1016/j.aninu.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
Reportedly, proteins involved in lipid metabolism change significantly in the jejunal crypt cells of early-weaned piglets, but the exact lipid profile change remains uncertain. In the present study, 32 piglets weaned at 21 d of age were randomly divided into 4 groups with 8 replicates. The jejunal crypt cells of a group of piglets on the post-weaning day (PWD) 1, 3, 7, and 14 were isolated per time point. Crypt cell lipid profiles were analyzed using ultra-high-performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry. This study showed that piglets suffered the greatest weaning stress on PWD 3 in terms of the lowest relative weight of the small intestine, the highest relative weight of the spleen, and the highest levels of malondialdehyde, cholesterol, and low-density lipoprotein cholesterol. The lipid profile of jejunal crypt cells including carnitine, sulfatide, sphingomyelin, hexosylceramide, and ceramide greatly changed after weaning, especially between PWD 3 and 14 (P < 0.05). The differential lipid species between these 2 d were mainly involved in the glycerophospholipid metabolism pathway. In addition, potential lipid biomarkers for weaning stress in crypt cells such as phosphatidylcholine (PC) (9:0/26:1), PC (17:0/18:2), carnitine (24:0), carnitine (22:0), sphingomyelin (d14:1/22:0), PC (P-18:0/18:4), phosphatidylethanolamine (P-16:0/20:4), phosphatidylinositol (15:1/24:4), and dihexosylceramide (d14:1/26:1) were identified. The changes in lipid profile might be related to the inflammation caused by early weaning. These findings might provide new therapeutical targets for intestinal dysfunctions caused by weaning stress.
Collapse
|
7
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
8
|
Yan F, Tian S, Du K, Xue X, Gao P, Chen Z. Preparation and nutritional properties of xylooligosaccharide from agricultural and forestry byproducts: A comprehensive review. Front Nutr 2022; 9:977548. [PMID: 36176637 PMCID: PMC9513447 DOI: 10.3389/fnut.2022.977548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharide (XOS) are functional oligosaccharides with prebiotic activities, which originate from lignocellulosic biomass and have attracted extensive attention from scholars in recent years. This paper summarizes the strategies used in the production of XOS, and introduces the raw materials, preparation methods, and purification technology of XOS. In addition, the biological characteristics and applications of XOS are also presented. The most commonly recommended XOS production strategy is the two-stage method of alkaline pre-treatment and enzymatic hydrolysis; and further purification by membrane filtration to achieve the high yield of XOS is required for prebiotic function. At the same time, new strategies and technologies such as the hydrothermal and steam explosion have been used as pre-treatment methods combined with enzymatic hydrolysis to prepare XOS. XOS have many critical physiological activities, especially in regulating blood glucose, reducing blood lipid, and improving the structure of host intestinal flora.
Collapse
Affiliation(s)
| | - Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | | | | | | | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
9
|
Stimbiotic Supplementation Alleviates Poor Performance and Gut Integrity in Weaned Piglets Induced by Challenge with E. coli. Animals (Basel) 2022; 12:ani12141799. [PMID: 35883346 PMCID: PMC9312148 DOI: 10.3390/ani12141799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the effects of stimbiotic (STB), a xylanase and xylo-oligosaccharide complex. A total of 36 male weaned pigs with initial body weights of 8.49 ± 0.10 kg were used in a 3-week experiment. The experiment was conducted in a 2 × 3 factorial arrangement (six replicates/treatment) of treatments consisting of two levels of challenge (challenge and non-challenge) and three levels of STB (0, 0.5, and 1 g/kg diet). Supplementations STB 0.5 g/kg (STB5) and STB 1 g/kg (STB10) improved the G:F (p = 0.04) in piglets challenged with STEC. STB supplementation, which also decreased (p < 0.05) the white blood cells, neutrophils, lymphocytes, and expression levels of tumor necrosis factor-alpha and interleukin-6. Supplementations STB5 and STB10 improved (p < 0.01) the lymphocytes and neutrophils in piglets challenged with STEC on 14 dpi. Additionally, supplementations STB5 and STB10 improved (p < 0.01) the tumor necrosis factor-alpha in piglets challenged with STEC on 3 dpi. Supplementations STB5 and STB10 also improved the villus height-to-crypt depth ratio (p < 0.01) in piglets challenged with STEC. Supplementation with STB reduced (p < 0.05) the expression levels of calprotectin. In conclusion, STB could alleviate a decrease of the performance, immune response, and inflammatory response induced by the STEC challenge.
Collapse
|