1
|
Shan X, Li C, Zhang L, Zou C, Yu R, Schwarz S, Shang Y, Li D, Brenciani A, Du XD. poxtA amplification and mutations in 23S rRNA confer enhanced linezolid resistance in Enterococcus faecalis. J Antimicrob Chemother 2024; 79:3199-3203. [PMID: 39331515 DOI: 10.1093/jac/dkae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVES This study aimed to explore the evolutionary patterns and resistance mechanisms of an Enterococcus faecalis strain harbouring poxtA under linezolid exposure. METHODS A poxtA-carrying E. faecalis electrotransformant DJH702 with a linezolid minimum inhibitory concentration of 4 mg/L was exposed to increasing concentrations of linezolid (8-64 mg/L). The derived strains growing at 8, 16, 32 and 64 mg/L, designed DJH702_8, DJH702_16, DJH702_32 and DJH702_64, were obtained. The amplification and overexpression of poxtA were measured using sequencing and RT-PCR, the fitness cost by competition assays and the stability of the repeat units by serial passage. RESULTS In all derived strains, high-level linezolid resistance develops through poxtA amplification. The relative copy numbers and transcription levels of poxtA were significantly increased. However, in the presence of higher linezolid concentrations, DJH702_32 and DJH702_64 showed reduced poxtA copy numbers and transcription levels compared with DJH702_8 and DJH702_16, but additional mutations in the 23S rRNA (G2505A). IS1216E-mediated formation of translocatable units with subsequent tandem amplification of these translocatable units supported the gain of poxtA segments. However, these amplicons were not stable and were lost frequently in the absence of a linezolid selection pressure. The amplification of the poxtA region did not result in a fitness cost, but mutations in 23S rRNA did. CONCLUSIONS poxtA-carrying E. faecalis electrotransformants used two distinct mechanisms to resist linezolid selection pressure: at lower concentrations, strains prioritized increasing poxtA expression levels, while at higher concentrations, a combination of increased poxtA expression and mutations in 23S rRNA was observed.
Collapse
Affiliation(s)
- Xinxin Shan
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Likuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenhui Zou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Runhao Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Yanhong Shang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Dexi Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Front Cell Infect Microbiol 2024; 14:1289396. [PMID: 38655285 PMCID: PMC11035753 DOI: 10.3389/fcimb.2024.1289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.
Collapse
Affiliation(s)
- Lukasz Korczak
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Iwaniuk
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Dechêne-Tempier M, de Boisséson C, Lucas P, Bougeard S, Libante V, Marois-Créhan C, Payot S. Virulence genes, resistome and mobilome of Streptococcus suis strains isolated in France. Microb Genom 2024; 10:001224. [PMID: 38536216 PMCID: PMC10995628 DOI: 10.1099/mgen.0.001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Claire de Boisséson
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Pierrick Lucas
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Génétique Virale et Biosécurité, BP53 22440 Ploufragan, France
| | - Stéphanie Bougeard
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Épidémiologie, santé et bien-être, BP53 22440 Ploufragan, France
| | | | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, BP53 22440 Ploufragan, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| |
Collapse
|
4
|
Huang H, Wan P, Luo X, Lu Y, Li X, Xiong W, Zeng Z. Tigecycline Resistance-Associated Mutations in the MepA Efflux Pump in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0063423. [PMID: 37432114 PMCID: PMC10434020 DOI: 10.1128/spectrum.00634-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023] Open
Abstract
Tigecycline is an important antibacterial drug for treating infection by clinical multidrug-resistant bacteria, and tigecycline-resistant Staphylococcus aureus (TRSA) has been increasingly reported in recent years. Notably, only rpsJ and mepA are associated with the tigecycline resistance of S. aureus. The mepA gene encodes MepA efflux pumps, and the overexpression of mepA has been confirmed to be directly related to tigecycline resistance. Although the mutations of MepA widely occur, the associations between TRSA and mutations of MepA are still unclear. In this study, we explored mutations in the mepA genes from various sources. Then, tigecycline resistance-associated mutations T29I, E287G, and T29I+E287G in MepA were identified, and their effects were evaluated through mutant deletion and complementation, tigecycline accumulation assay, and molecular docking experiments. Results showed that the MICs of tigecycline, gentamicin, and amikacin increased in special complementary transformants and recovered after the addition of the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The tigecycline accumulation assay of the mepA-deleted mutant strain and its complementary transformants showed that T29I, E287G, and T29I+E287G mutations promoted tigecycline efflux, and molecular docking showed that mutations T29I, E287G, and T29I+E287G decreased the binding energy and contributed to ligand binding. Moreover, we inferred the evolutionary trajectory of S. aureus under the selective pressure of tigecycline in vitro. Overall, our study indicated that mutations in MepA play important roles in tigecycline resistance in S. aureus. IMPORTANCE Previous analysis has shown that overexpression of MepA is an exact mechanism involved in tigecycline resistance apart from the rpsJ mutation and is usually dependent on the mutant mepR. However, no research has evaluated the effects of diverse mutations discovered in TRSA in MepA. This study demonstrates that the mutations in MepA confer resistance to tigecycline without overexpression and provides genotypic references for identifying TRSA. Although tigecycline resistance-associated mutations in MepA identified in this study have not been observed in clinical isolates, the mechanism should be explored given that S. aureus strains are prevalent in the environment. Measures should be implemented to contain TRSA within the time window before tigecycline resistance-associated mutations in MepA are prevalent.
Collapse
Affiliation(s)
- Honghao Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xinyue Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Garvey M. Antimicrobial Peptides Demonstrate Activity against Resistant Bacterial Pathogens. Infect Dis Rep 2023; 15:454-469. [PMID: 37623050 PMCID: PMC10454446 DOI: 10.3390/idr15040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The antimicrobial resistance crisis is an ongoing major threat to public health safety. Low- and middle-income countries are particularly susceptible to higher fatality rates and the economic impact of antimicrobial resistance (AMR). As an increasing number of pathogens emerge with multi- and pan-drug resistance to last-resort antibiotics, there is an urgent need to provide alternative antibacterial options to mitigate disease transmission, morbidity, and mortality. As identified by the World Health Organization (WHO), critically important pathogens such as Klebsiella and Pseudomonas species are becoming resistant to last-resort antibiotics including colistin while being frequently isolated from clinical cases of infection. Antimicrobial peptides are potent amino acid sequences produced by many life forms from prokaryotic, fungal, plant, to animal species. These peptides have many advantages, including their multi-hit mode of action, potency, and rapid onset of action with low levels of resistance being evident. These innate defense mechanisms also have an immune-stimulating action among other activities in vivo, thus making them ideal therapeutic options. Large-scale production and formulation issues (pharmacokinetics, pharmacodynamics), high cost, and protease instability hinder their mass production and limit their clinical application. This review outlines the potential of these peptides to act as therapeutic agents in the treatment of multidrug-resistant infections considering the mode of action, resistance, and formulation aspects. Clinically relevant Gram-positive and Gram-negative pathogens are highlighted according to the WHO priority pathogen list.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91YW50 Sligo, Ireland
| |
Collapse
|
6
|
Han N, Li J, Wan P, Pan Y, Xu T, Xiong W, Zeng Z. Co-Existence of Oxazolidinone Resistance Genes cfr(D) and optrA on Two Streptococcus parasuis Isolates from Swine. Antibiotics (Basel) 2023; 12:antibiotics12050825. [PMID: 37237728 DOI: 10.3390/antibiotics12050825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study was performed to investigate the presence and characteristics of the oxazolidinone resistance genes optrA and cfr(D) in Streptococcus parasuis. In total, 36 Streptococcus isolates (30 Streptococcus suis isolates, 6 Streptococcus parasuis isolates) were collected from pig farms in China in 2020-2021, using PCR to determine the presence of optrA and cfr. Then, 2 of the 36 Streptococcus isolates were further processed as follows. Whole-genome sequencing and de novo assembly were employed to analyze the genetic environment of the optrA and cfr(D) genes. Conjugation and inverse PCR were employed to verify the transferability of optrA and cfr(D). The optrA and cfr(D) genes were identified in two S. parasuis strains named SS17 and SS20, respectively. The optrA of the two isolates was located on chromosomes invariably associated with the araC gene and Tn554, which carry the resistance genes erm(A) and ant(9). The two plasmids that carry cfr(D), pSS17 (7550 bp) and pSS20-1 (7550 bp) have 100% nucleotide sequence identity. The cfr(D) was flanked by GMP synthase and IS1202. The findings of this study extend the current knowledge of the genetic background of optrA and cfr(D) and indicate that Tn554 and IS1202 may play an important role in the transmission of optrA and cfr(D), respectively.
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Cheng Y, Li Y, Yu R, Ma M, Yang M, Si H. Identification of Novel tet(X3) Variants Resistant To Tigecycline in Acinetobacter Species. Microbiol Spectr 2022; 10:e0133322. [PMID: 36409072 PMCID: PMC9784759 DOI: 10.1128/spectrum.01333-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of the tet(X) gene is a severe challenge to global public health security, as clinical tigecycline resistance shows a rapidly rising trend. In this research, we identified two tigecycline-resistant Acinetobacter sp. strains containing seven novel tet(X3) variants recovered from fecal samples from Chinese farms. The seven Tet(X3) variants showed 15.4% to 99.7% amino acid identity with Tet(X3). By expressing tet(X3.7) and tet(X3.9), the tigecycline MIC values for Escherichia coli JM109 increased 64-fold (from 0.13 to 8 mg/L). However, the other tet(X3) variants did not have a significant change in the MIC of tigecycline. We found that the 26th amino acid site of Tet(X3.7) changed from proline to serine, and the 25th amino acid site of Tet(X3.9) changed from glycine to alanine, which reduced the MIC of tigecycline by 2-fold [the MIC of tet(X3) to tigecycline was 16 mg/L] but did not affect its expression to tigecycline. The tet(X3) variants surrounded by mobile genetic elements appeared in the structure of gene clusters with tandem repeat sequences and were adjacent to the site-specific recombinase-encoding gene xerD. Therefore, there is a risk of horizontal transfer of resistant genes. Our study reports seven novel tet(X3) variants; the continuing emergence of tigecycline variants makes continuous monitoring of resistance to tigecycline even more critical. IMPORTANCE Although it is illegal to use tigecycline and carbapenems to treat bacterial infections in animals, we can still isolate bacteria containing both mobile resistance genes from animals, and tet(X) is currently an essential factor in degrading tigecycline. Here, we characterized two multidrug-resistant Acinetobacter sp. strains that contained vital resistance genes, such as sul2, a blaOXA-164-like gene, floR, tetM, and multiple novel tet(X3) variants with different tandem structures. It is of paramount significance that their mechanism may transfer to other Gram-negative pathogens, even if their tandem structures have no cumulative effect on tigecycline resistance.
Collapse
Affiliation(s)
- Yumeng Cheng
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Yakun Li
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Runhao Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mingxiang Ma
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Meng Yang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Wang Q, Lei C, Cheng H, Yang X, Huang Z, Chen X, Ju Z, Zhang H, Wang H. Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. Microbiol Spectr 2022; 10:e0161522. [PMID: 36125305 PMCID: PMC9602804 DOI: 10.1128/spectrum.01615-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as blaNDM-1 and cfr. Additionally, we were the first to report that tet(X4) and blaNDM-1 coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10-2 to 10-7. These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hansen Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xue Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Xuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Zijing Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Haoyu Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Anyanwu MU, Nwobi OC, Okpala COR, Ezeonu IM. Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Front Microbiol 2022; 13:808744. [PMID: 35979498 PMCID: PMC9376449 DOI: 10.3389/fmicb.2022.808744] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Microbiology Unit, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Obichukwu Chisom Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ifeoma M. Ezeonu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
10
|
Li XY, Yu R, Xu C, Shang Y, Li D, Du XD. A Small Multihost Plasmid Carrying erm(T) Identified in Enterococcus faecalis. Front Vet Sci 2022; 9:850466. [PMID: 35711812 PMCID: PMC9197182 DOI: 10.3389/fvets.2022.850466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the mobile genetic elements involved in the horizontal transfer of erm(T) in Enterococcus faecalis, and its transmission ability in heterologous hosts. A total of 159 erythromycin-resistant enterococci isolates were screened for the presence of macrolide resistance genes by PCR. Whole genome sequencing for erm(T)-carrying E. faecalis E165 was performed. The transmission ability in heterologous hosts was explored by conjugation, transformation, and fitness cost. The erm(T) gene was detected only in an E. faecalis isolate E165 (1/159), which was located on a 4,244-bp small plasmid, designed pE165. Using E. faecalis OG1RF as the recipient strain, pE165 is transferable. Natural transformation experiments using Streptococcus suis P1/7 and Streptococcus mutans UA159 as the recipients indicated it is transmissible, which was also observed by electrotransformation using Staphylococcus aureus RN4220 as a recipient. The erm(T)-carrying pE165 can replicate in the heterologous host including E. faecalis OG1RF, S. suis P1/7, S. mutans UA159, and S. aureus RN4220 and conferred resistance to erythromycin and clindamycin to all hosts. Although there is no disadvantage of pE165 in the recipient strains in growth curve experiments, all the pE165-carrying recipients had a fitness cost compared to the corresponding original recipients in growth competition experiments. In brief, an erm(T)-carrying plasmid was for the first time described in E. faecalis and as transmissible to heterologous hosts.
Collapse
|