1
|
Zapico D, Espinosa J, Criado M, Gutiérrez D, Ferreras MDC, Benavides J, Pérez V, Fernández M. Immunohistochemical expression of TLR1, TLR2, TLR4, and TLR9 in the different types of lesions associated with bovine paratuberculosis. Vet Pathol 2024:3009858241302850. [PMID: 39720873 DOI: 10.1177/03009858241302850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The factors that determine the appearance of the different pathologic forms associated with bovine paratuberculosis are not fully understood, but new research suggests a critical role of innate immunity. Toll-like receptors (TLRs) trigger the recognition of invading pathogens by innate immune cells and the onset of specific immune responses. The aim of this work was to assess, immunohistochemically, the expression of TLR1, TLR2, TLR4, and TLR9 in intestinal samples of 20 cows showing different types of paratuberculous lesions: uninfected controls, focal lesions, paucibacillary, and multibacillary diffuse forms. The majority of labeled cells were morphologically consistent with macrophages. A differential cell count was performed in the intestinal lamina propria, gut-associated lymphoid tissue, and mesenteric lymph node. TLR9 immunolabeling between the different types of lesions was compared using a complete H-score. Focal and diffuse paucibacillary forms contained significantly increased TLR2-expressing macrophages outside of the lesions compared with the controls and diffuse multibacillary forms, and moderate TLR9 immunolabeling within granulomas. In the multibacillary granulomatous lesions, the expression of TLR1 and TLR4 was observed as well as increased TLR9 expression compared with the rest of the groups. Differences in the predominance of one type or another of TLR allows us to elucidate the importance of the innate immune response and its possible role in the development of the different types of paratuberculosis lesions.
Collapse
Affiliation(s)
- David Zapico
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - José Espinosa
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - Miguel Criado
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - Daniel Gutiérrez
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | | | | | - Valentín Pérez
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | | |
Collapse
|
2
|
Stefanova EP, Sierra E, Fernández A, Quesada-Canales O, Paz-Sánchez Y, Colom-Rivero A, Espinosa de los Monteros A, Herráez P, Domínguez L, Bezos J, Pérez-Sancho M, Moreno I, Risalde MA, Andrada M. Detection of caprine paratuberculosis (Johne's disease) in pre- and post-vaccinated herds: morphological diagnosis, lesion grading, and bacterial identification. Front Vet Sci 2024; 11:1395928. [PMID: 39144076 PMCID: PMC11322454 DOI: 10.3389/fvets.2024.1395928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Samples from the mesenteric lymph nodes (MS LNs) and ileocecal valves (ICV) of 105 goats, comprising 61 non-vaccinated and 44 vaccinated against Mycobacterium avium subspecies paratuberculosis (MAP), were collected at slaughter from a farm with a confirmed history of paratuberculosis (PTB). These goats had subclinical infections. PTB-compatible lesions in the MS LNs, ICV lamina propria (LP), and Peyer's patches (PPs) were graded separately. Furthermore, the load of acid-fast bacilli was quantified using Ziehl-Neelsen staining (ZN), MAP antigens by immunohistochemistry (IHC), and MAP DNA by PCR targeting the IS900 sequence. Gross PTB-compatible lesions were found in 39% of the goats, with 31.72% vaccinated (V) and 68.29% non-vaccinated (nV). Histopathological lesions induced MAP were observed in 58% of the animals, with 36.07% vaccinated and 63.93% non-vaccinated. The inclusion of histopathology as a diagnostic tool led to a 28% increase in diagnosed cases in MS LNs and 86.05% in ICV. Grade IV granulomas with central mineralization and necrosis were the most common lesions in MS LNs. In the ICV, mild granulomatous enteritis with multifocal foci of epithelioid macrophages was predominant, occurring more frequently in the PPs than in the LP. Furthermore, statistical differences in the presence of histopathological lesions between vaccinated and non-vaccinated goats were noted in MS LNs, ICV LPs, and ICV PPs. Non-vaccinated animals showed higher positivity rates in ZN, IHC, and PCR tests, underscoring the benefits of anti-MAP vaccination in reducing PTB lesions and bacterial load in target organs. Our findings emphasize the necessity of integrating gross and histopathological assessments with various laboratory techniques for accurate morphological and etiological diagnosis of PTB in both vaccinated and non-vaccinated goats with subclinical disease. However, further studies are required to refine sampling protocols for subclinical PTB in goats to enhance the consistency of diagnostic tools.
Collapse
Affiliation(s)
- Elena Plamenova Stefanova
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Eva Sierra
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Antonio Fernández
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Oscar Quesada-Canales
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Yania Paz-Sánchez
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Ana Colom-Rivero
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Antonio Espinosa de los Monteros
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Pedro Herráez
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Inmaculada Moreno
- Servicio de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Madrid, Spain
| | - María A. Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Marisa Andrada
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
3
|
Kravitz A, Liao M, Morota G, Tyler R, Cockrum R, Manohar BM, Ronald BSM, Collins MT, Sriranganathan N. Retrospective Single Nucleotide Polymorphism Analysis of Host Resistance and Susceptibility to Ovine Johne's Disease Using Restored FFPE DNA. Int J Mol Sci 2024; 25:7748. [PMID: 39062990 PMCID: PMC11276633 DOI: 10.3390/ijms25147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a chronic, untreatable gastroenteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. Evidence for host genetic resistance to disease progression exists, although it is limited due to the extended incubation period (years) and diagnostic challenges. To overcome this, previously restored formalin-fixed paraffin embedded tissue (FFPE) DNA from archived FFPE tissue cassettes was utilized for a novel retrospective case-control genome-wide association study (GWAS) on ovine JD. Samples from known MAP-infected flocks with ante- and postmortem diagnostic data were used. Cases (N = 9) had evidence of tissue infection, compared to controls (N = 25) without evidence of tissue infection despite positive antemortem diagnostics. A genome-wide efficient mixed model analysis (GEMMA) to conduct a GWAS using restored FFPE DNA SNP results from the Illumina Ovine SNP50 Bead Chip, identified 10 SNPs reaching genome-wide significance of p < 1 × 10-6 on chromosomes 1, 3, 4, 24, and 26. Pathway analysis using PANTHER and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was completed on 45 genes found within 1 Mb of significant SNPs. Our work provides a framework for the novel use of archived FFPE tissues for animal genetic studies in complex diseases and further evidence for a genetic association in JD.
Collapse
Affiliation(s)
- Amanda Kravitz
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mingsi Liao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ron Tyler
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Rebecca Cockrum
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - B. Murali Manohar
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - B. Samuel Masilamoni Ronald
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - Michael T. Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nammalwar Sriranganathan
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Usai MG, Casu S, Sechi T, Salaris SL, Miari S, Mulas G, Cancedda MG, Ligios C, Carta A. Advances in understanding the genetic architecture of antibody response to paratuberculosis in sheep by heritability estimate and LDLA mapping analyses and investigation of candidate regions using sequence-based data. Genet Sel Evol 2024; 56:5. [PMID: 38200416 PMCID: PMC10777618 DOI: 10.1186/s12711-023-00873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Paratuberculosis is a contagious and incurable disease that is caused by Mycobacterium avium subsp. paratuberculosis (MAP) with significant negative effects on animal welfare and farm profitability. Based on a large naturally infected flock over 12 years, we analyzed repeated enzyme-linked immunosorbent assay tests (ELISA), OvineSNP50 BeadChip genotypes and whole-genome sequences imputed from 56 influential animals. The main goals were to estimate the genetic parameters of proxy traits for resistance to MAP, identify genomic regions associated with the host's immune response against MAP and search for candidate genes and causative mutations through association and functional annotation analyses of polymorphisms identified by sequencing. RESULTS Two variables were derived from ELISA tests. The first, a binary variable, assessed the infection status of each animal over the entire productive life, while the second considered the level of antibody recorded over time. Very similar results were obtained for both variables. Heritability estimates of about 0.20 were found and a significant region capturing 18% and 13% of the genetic variance was detected on ovine chromosome 20 by linkage disequilibrium and linkage analysis on OvineSNP50 positions. Functional annotation and association analyses on the imputed sequence polymorphisms that were identified in this region were carried out. No significant variants showed a functional effect on the genes that mapped to this region, most of which belong to the major histocompatibility complex class II (MHC II). However, the conditional analysis led to the identification of two significant polymorphisms that can explain the genetic variance associated with the investigated genomic region. CONCLUSIONS Our results confirm the involvement of the host's genetics in susceptibility to MAP in sheep and suggest that selective breeding may be an option to limit the infection. The estimated heritability is moderate with a relevant portion being due to a highly significant region on ovine chromosome 20. The results of the combined use of sequence-based data and functional analyses suggest several genes belonging to the MHC II as the most likely candidates, although no mutations in their coding regions showed a significant association. Nevertheless, information from genotypes of two highly significant polymorphisms in the region can enhance the efficiency of selective breeding programs.
Collapse
Affiliation(s)
- Mario Graziano Usai
- Research Unit Genetics and Biotechnology - Agris Sardegna, 07100, Sassari, Italy
| | - Sara Casu
- Research Unit Genetics and Biotechnology - Agris Sardegna, 07100, Sassari, Italy.
| | - Tiziana Sechi
- Research Unit Genetics and Biotechnology - Agris Sardegna, 07100, Sassari, Italy
| | - Sotero L Salaris
- Research Unit Genetics and Biotechnology - Agris Sardegna, 07100, Sassari, Italy
| | - Sabrina Miari
- Research Unit Genetics and Biotechnology - Agris Sardegna, 07100, Sassari, Italy
| | - Giuliana Mulas
- Research Unit Genetics and Biotechnology - Agris Sardegna, 07100, Sassari, Italy
| | | | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale Della Sardegna G. Pegreffi, 07100, Sassari, Italy
| | - Antonello Carta
- Research Unit Genetics and Biotechnology - Agris Sardegna, 07100, Sassari, Italy
| |
Collapse
|
5
|
Jolly A, Fernández B, Mundo SL, Elguezabal N. Modeling Paratuberculosis in Laboratory Animals, Cells, or Tissues: A Focus on Their Applications for Pathogenesis, Diagnosis, Vaccines, and Therapy Studies. Animals (Basel) 2023; 13:3553. [PMID: 38003170 PMCID: PMC10668694 DOI: 10.3390/ani13223553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paratuberculosis is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. Paratuberculosis that affects a wide variety of domestic and wild animals. It is considered one of the diseases with the highest economic impact on the ruminant industry. Despite many efforts and intensive research, paratuberculosis control still remains controversial, and the existing diagnostic and immunoprophylactic tools have great limitations. Thus, models play a crucial role in understanding the pathogenesis of infection and disease, and in testing novel vaccine candidates. Ruminant animal models can be restricted by several reasons, related to space requirements, the cost of the animals, and the maintenance of the facilities. Therefore, we review the potential and limitations of the different experimental approaches currently used in paratuberculosis research, focusing on laboratory animals and cell-based models. The aim of this review is to offer a vision of the models that have been used, and what has been achieved or discovered with each one, so that the reader can choose the best model to answer their scientific questions and prove their hypotheses. Also, we bring forward new approaches that we consider worth exploring in the near future.
Collapse
Affiliation(s)
- Ana Jolly
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
| | - Bárbara Fernández
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Silvia Leonor Mundo
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario-Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
6
|
Badia-Bringué G, Canive M, Vázquez P, Garrido JM, Fernández A, Juste RA, Jiménez JA, González-Recio O, Alonso-Hearn M. Association between High Interferon-Gamma Production in Avian Tuberculin-Stimulated Blood from Mycobacterium avium subsp. paratuberculosis-Infected Cattle and Candidate Genes Implicated in Necroptosis. Microorganisms 2023; 11:1817. [PMID: 37512987 PMCID: PMC10384200 DOI: 10.3390/microorganisms11071817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanisms underlying host resistance to Mycobacterium avium subsp. paratuberculosis (MAP) infection are largely unknown. In the current study, we hypothesize that cows with an ability to produce higher levels of interferon-gamma (IFNɣ) might control MAP infection more successfully. To test this hypothesis, IFNɣ production was measured using a specific IFNɣ ELISA kit in avian purified protein derivative (aPPD)-stimulated blood samples collected from 152 Holstein cattle. DNA isolated from peripheral blood samples of the animals included in the study was genotyped with the EuroG Medium-Density Bead Chip, and the genotypes were imputed to whole-genome sequencing. A genome-wide association analysis (GWAS) revealed that high levels of IFNɣ in response to the aPPD were associated with a specific genetic profile (heritability = 0.64) and allowed the identification of 71 SNPs, 40 quantitative trait loci (QTL), and 104 candidate genes. A functional analysis using the 104 candidate genes revealed a significant enrichment of genes involved in the innate immune response and, more specifically, in necroptosis. Taken together, our results define a heritable and distinct immunogenetic profile associated with the production of high IFNɣ levels and with the capacity of the host to lyse MAP-infected macrophages by necroptosis.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
7
|
Tigani-Asil ETAE, Abdelwahab GED, Abdu EHAM, Terab AMA, Khalil NAH, Marri ZJMA, Yuosf MF, Shah AAM, Khalafalla AI, Ishag HZA. Pathological, microscopic, and molecular diagnosis of paratuberculosis/John's disease in naturally infected dromedary camel ( Camelus dromedarius). Vet World 2023; 16:1277-1283. [PMID: 37577185 PMCID: PMC10421554 DOI: 10.14202/vetworld.2023.1277-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/15/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Paratuberculosis (PTB) or John's disease is a chronic disease of ruminants impeding the reproduction and productivity of the livestock sector worldwide. Since there is a lack of pathological studies explaining the nature and development of the disease in camels, this study aimed to highlight the anatomopathological changes of PTB in camels, which may help in verifying and validating some diagnostic tests used to detect the etiology of the disease in camel tissues. Materials and Methods In August 2017, at Alselaa border's Veterinary Clinic of Al Dhafra Region, Western Abu Dhabi, UAE, one imported culled she-camel of 2 years old was subjected to clinical, microscopic, and anatomopathological investigations along with real-time quantitative polymerase chain reaction (q-PCR) to confirm the infection and correlate between clinical signs and pathological lesions of the PTB in dromedary camels. Results Clinically, typical clinical signs compliant with the pathognomonic gross and histologic lesions of PTB were seen in naturally infected dromedary camel. As presumptive diagnosis microscopically, acid-fast coccobacillus bacterium clumps were demonstrated in direct fecal smears as well as in scraped mucosal and crushed mesenteric lymph node films, and in histopathological sections prepared from a necropsied animal and stained by Ziehl-Neelsen stain. Free and intracellular acid-fast clump phagosomes were further confirmed as Mycobacterium avium subsp. paratuberculosis by q-PCR. Conclusion Clinical signs and pathological lesions of paratuberculosis in a dromedary camel were found to be similar to those of the other susceptible hosts.
Collapse
Affiliation(s)
- El Tigani Ahmed El Tigani-Asil
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Ghada El Derdiri Abdelwahab
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - El Hadi Ahmed Mohamed Abdu
- Extension Services and Animal Health Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Abdelnasir Mohammed Adam Terab
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Nasareldien Altaib Hussein Khalil
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Zhaya Jaber Mohammed Al Marri
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Mohd Farouk Yuosf
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Asma Abdi Mohamed Shah
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Abdelmalik Ibrahim Khalafalla
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Hassan Zackaria Ali Ishag
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Corbiere F, Guellouz D, Tasca C, Foures L, Dubaux E, Foucras G. Effects of Silirum ®-Based Vaccination Programs on Map Fecal Shedding and Serological Response in Seven French Dairy Herds. Animals (Basel) 2023; 13:ani13091569. [PMID: 37174606 PMCID: PMC10177616 DOI: 10.3390/ani13091569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: paratuberculosis is an important disease in ruminants, causing worldwide economic losses to the livestock industry. Although vaccination is known not to prevent transmission of the causative agent Mycobacterium avium subsp. paratuberculosis (Map), it is considered an effective tool for paratuberculosis in infected herds. The objectives of this controlled field study were to evaluate the effects of the whole-cell heat-killed Silirum® vaccine on Map fecal shedding and serological status in dairy herds infected with paratuberculosis. (2) Methods: The serological status (ELISA) and fecal shedding (qPCR) of 358 vaccinated cows were assessed over 3 years in 7 infected dairy herds in the Meuse department, France. Within each herd, cows from the last non-vaccinated birth cohort (n = 265) were used as controls. The probability and level of Map fecal shedding and the serological status were modeled using multivariable mixed general linear regression models. (3) Results: Overall, 34.7% of cows tested positive at least once on fecal qPCR, with significant differences between herds, but high shedding levels were observed in only 5.5% of cows. Compared to non-vaccinated seronegative cows, a statistically significant reduction in the probability of Map shedding was found only in cows vaccinated before 4 to 5 months of age that tested negative for Map antibodies throughout the study period (odds ratio = 0.5, 95% confidence interval: 0.3-0.9, p = 0.008), but no significant effect of vaccination on the amount of Map shedding could be evidenced. Finally, the younger the cows were when vaccinated, the less they tested positive on the serum ELISA. (4) Conclusions: a beneficial effect of vaccination on Map fecal shedding may exist in cows vaccinated before 4 to 5 months of age. The variability of the serum ELISA response in vaccinated cows remains to be investigated.
Collapse
|
9
|
Maurić Maljković M, Vlahek I, Piplica A, Ekert Kabalin A, Sušić V, Stevanović V. Prospects of toll-like receptors in dairy cattle breeding. Anim Genet 2023. [PMID: 37051618 DOI: 10.1111/age.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Toll-like receptors (TLRs) play an important role in mediating the immune response against various microbes, such as bacteria, viruses, parasites, and fungi, in innate and adaptive immunity. Ten functional TLRs (TLR1 to TLR10) have been identified and mapped in cattle, with each TLR recognising specific pathogen-associated molecular patterns. The variation in genes controlling the immune response contributes to susceptibility or resistance to various infectious diseases such as mastitis, bovine tuberculosis, and paratuberculosis. Identifying TLR SNPs shows promising results for future marker-assisted breeding strategies, screening for disease risks, and improving the genetic resistance of dairy cattle. This article aims not only to review the research into susceptibility or resistance to infectious diseases and milk production traits in dairy cattle but also to discuss the limitations in current studies and the prospects in dairy cattle breeding.
Collapse
Affiliation(s)
- M Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - I Vlahek
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - A Piplica
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - A Ekert Kabalin
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - V Sušić
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - V Stevanović
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Mazzone P, Di Paolo A, Petrucci L, Torricelli M, Corneli S, Sebastiani C, Ciullo M, Sebastianelli M, Costarelli S, Scoccia E, Sbarra F, Gabbianelli F, Chillemi G, Valentini A, Pezzotti G, Biagetti M. Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed. Animals (Basel) 2023; 13:ani13040587. [PMID: 36830374 PMCID: PMC9951665 DOI: 10.3390/ani13040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis (PTB), a widespread chronic enteritis of ruminants. The progression of the infection depends on the containment action of innate and cell-mediated immunity (CMI), and it is related to environmental and genetic factors. In particular, PTB susceptibility seems to be associated with specific genes coding for immune regulators involved in the cell-mediated response during the infection. The aim of this preliminary study was to verify, in Italian beef cattle, an association between MAP infectious status and the presence of single nucleotide polymorphisms (SNPs) in candidate genes. To the best of our knowledge, this is the first investigation conducted on a native beef cattle breed, known as Marchigiana, reared in Central Italy. The present research, based on a longitudinal study, aimed to identify and correlate phenotypic and genetic profiles characteristic of the subjects potentially able to contrast or contain PTB. In a MAP-infected herd, ELISA, IFN-γ tests, qPCR, and cultures were performed at a follow-up, occurring within a period ranging from three to six years, to evaluate the individual state of infection. Animals testing positive for at least one test were considered infected. DNA samples of 112 bovines, with known MAP statuses, were analyzed to verify an association with SNPs in the genes encoding gamma-interferon (BoIFNG), interleukin receptor 10 (IL10RA), interleukin receptor 12 (IL12RB2), and toll-like receptors (TLR1, TLR2, TLR4). Regarding statistical analysis, the differences among target genes and pairs of alleles in the analyzed groups of animals, were evaluated at a significance level of p < 0.05. For IL10RA and for IL12RB2 genes, relevant differences in genotypic frequencies among the considered cattle groups were observed. For all candidate genes studied in this investigation, SNP genotypes already associated with PTB resistance were found more frequently in our population, suggesting potential resistance traits in the Marchigiana breed.
Collapse
Affiliation(s)
- Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Antonella Di Paolo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Linda Petrucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
- Correspondence: (L.P.); (M.T.)
| | - Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
- Correspondence: (L.P.); (M.T.)
| | - Sara Corneli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Martina Sebastianelli
- Azienda Sanitaria Unica Regionale Marche, Area Vasta 2, Servizio di Igiene degli Allevamenti e delle Produzioni Zootecniche, 60127 Ancona, Italy
| | - Silva Costarelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Eleonora Scoccia
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Fiorella Sbarra
- A.N.A.B.I.C. Associazione Nazionale Allevatori Bovini Italiani Carne, Strada del Vio Viscoloso 21, San Martino in Colle, 06132 Perugia, Italy
| | - Federica Gabbianelli
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Alessio Valentini
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Giovanni Pezzotti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
11
|
Sánchez-Ramos R, Trujano-Chavez MZ, Gallegos-Sánchez J, Becerril-Pérez CM, Cadena-Villegas S, Cortez-Romero C. Detection of Candidate Genes Associated with Fecundity through Genome-Wide Selection Signatures of Katahdin Ewes. Animals (Basel) 2023; 13:ani13020272. [PMID: 36670812 PMCID: PMC9854690 DOI: 10.3390/ani13020272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
One of the strategies to genetically improve reproductive traits, despite their low inheritability, has been the identification of candidate genes. Therefore, the objective of this study was to detect candidate genes associated with fecundity through the fixation index (FST) and runs of homozygosity (ROH) of selection signatures in Katahdin ewes. Productive and reproductive records from three years were used and the genotypes (OvineSNP50K) of 48 Katahdin ewes. Two groups of ewes were identified to carry out the genetic comparison: with high fecundity (1.3 ± 0.03) and with low fecundity (1.1 ± 0.06). This study shows for the first time evidence of the influence of the CNOT11, GLUD1, GRID1, MAPK8, and CCL28 genes in the fecundity of Katahdin ewes; in addition, new candidate genes were detected for fecundity that were not reported previously in ewes but that were detected for other species: ANK2 (sow), ARHGAP22 (cow and buffalo cow), GHITM (cow), HERC6 (cow), DPF2 (cow), and TRNAC-GCA (buffalo cow, bull). These new candidate genes in ewes seem to have a high expression in reproduction. Therefore, future studies are needed focused on describing the physiological basis of changes in the reproductive behavior influenced by these genes.
Collapse
Affiliation(s)
- Reyna Sánchez-Ramos
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
| | | | - Jaime Gallegos-Sánchez
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
| | - Carlos Miguel Becerril-Pérez
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
- Agroecosistemas Tropicales, Colegio de Postgraduados, Campus Veracruz, Carretera Xalapa-Veracruz Km. 88.5, Manlio Favio Altamirano, Veracruz 91690, Mexico
| | - Said Cadena-Villegas
- Producción Agroalimentaria en Trópico, Colegio de Postgraduados, Campus Tabasco, Periférico Carlos A. Molina, Ranchería Rio Seco y Montaña, Heroica Cárdenas 86500, Mexico
| | - César Cortez-Romero
- Recursos Genéticos y Productividad-Ganadería, Colegio de Postgraduados, Campus Montecillo, Carretera Federal México-Texcoco Km. 36.5, Texcoco 56264, Mexico
- Innovación en Manejo de Recursos Naturales, Colegio de Postgraduados, Campus San Luis Potosí, Agustín de Iturbide No. 73, Salinas de Hidalgo, San Luis Potosí 78622, Mexico
- Correspondence: ; Tel.: +52-5959-520-200 (ext. 4000)
| |
Collapse
|
12
|
Sanchez MP, Tribout T, Fritz S, Guatteo R, Fourichon C, Schibler L, Delafosse A, Boichard D. New insights into the genetic resistance to paratuberculosis in Holstein cattle via single-step genomic evaluation. Genet Sel Evol 2022; 54:67. [PMID: 36243688 PMCID: PMC9569073 DOI: 10.1186/s12711-022-00757-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Bovine paratuberculosis, or Johne’s disease (JD), is a contagious and incurable disease caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has adverse effects on animal welfare and is very difficult to control, leading to serious economic consequences. An important line of defense to this disease is host genetic resistance to MAP, which, when it will be more fully understood, could be improved through selective breeding. Using a large dataset of Holstein cows (161,253 animals including 56,766 cows with ELISA serological phenotypes and 12,431 animals with genotypes), we applied a single-step single nucleotide polymorphism (SNP) best linear unbiased prediction approach to investigate the genetic determinism underlying resistance to this disease (heritability estimate and identification of relevant genomic regions) and estimated genetic trends, reliability, and relative risk factors associated with genomic predictions. Results Resistance to JD was moderately heritable (0.14) and 16 genomic regions were detected that accounted for at least 0.05% of the breeding values variance (GV) in resistance to JD, and were located on chromosomes 1, 3, 5, 6, 7, 19, 20, 21, 23, 25, and 27, with the highest percentage of variance explained by regions on chromosomes 23 (0.36% GV), 5 (0.22% GV), 1 (0.14% GV), and 3 (0.13% GV). When estimated for the whole chromosomes, the autosomes with the largest overall contributions were chromosomes 3 (5.3% GV), 10 (4.8%), 23 (4.7%), 1 (3.6%), 7 (3.4%), 5 (2.9%), 12 (2.5%), 11 (2.2%), and 13 (2%). We estimated a slightly favorable genetic trend in resistance to JD over the last two decades, which can be explained by a low positive genetic correlation between resistance to JD and total merit index (+ 0.06). Finally, in a validation population of 907 cows, relatively reliable genomic predictions (reliability = 0.55) were obtained, which allowed the identification of cows at high risk of infection. Conclusions This study provides new insights into the genetic determinism of resistance to JD and shows that this trait can be predicted from SNP genotypes. It has led to the implementation of a single-step genomic evaluation that should rapidly become an effective tool for controlling paratuberculosis on French Holstein farms.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Thierry Tribout
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Eliance, 149 Rue de Bercy, 75012, Paris, France
| | | | | | | | | | - Didier Boichard
- Université Paris Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
13
|
Taylor EN, Beckmann M, Hewinson G, Rooke D, Mur LAJ, Koets AP. Metabolomic changes in polyunsaturated fatty acids and eicosanoids as diagnostic biomarkers in Mycobacterium avium ssp. paratuberculosis (MAP)-inoculated Holstein-Friesian heifers. Vet Res 2022; 53:68. [PMID: 36056402 PMCID: PMC9440510 DOI: 10.1186/s13567-022-01087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative organism of Johne's disease, a chronic granulomatous enteritis of ruminants. We have previously used naturally MAP-infected heifer calves to document metabolomic changes occurring in MAP infections. Herein, we used experimentally MAP-inoculated heifer calves to identify biomarkers for MAP infections. At 2-weeks of age, 20 Holstein-Friesian (HF) calves were experimentally inoculated with MAP. These calves, along with 20 control calves, were sampled biweekly up to 13-months of age and then monthly up to 19-months of age. Sera were assessed using flow infusion electrospray high-resolution mass spectrometry (FIE-HRMS) on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer for high throughput, sensitive, non-targeted metabolite fingerprinting. Partial least squares-discriminate analysis (PLS-DA) and hierarchical cluster analysis (HCA) discriminated between MAP-inoculated and control heifer calves. Out of 34 identified metabolites, six fatty acyls were able to differentiate between experimental groups throughout the study, including 8, 11, 14-eicosatrienoic acid and cis-8, 11, 14, 17-eicosatetraenoic acid which were also detected in our previous study and so further suggested their value as biomarkers for MAP infection. Pathway analysis highlighted the role of the alpha-linoleic acid and linoleic acid metabolism. Within these pathways, two broad types of response, with a rapid increase in some saturated fatty acids and some n-3 polyunsaturated fatty acids (PUFAs) and later n-6 PUFAs, became predominant. This could indicate an initial anti-inflammatory colonisation phase, followed by an inflammatory phase. This study demonstrates the validity of the metabolomic approach in studying MAP infections. Nevertheless, further work is required to define further key events, particularly at a cell-specific level.
Collapse
Affiliation(s)
- Emma N Taylor
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Glyn Hewinson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK.,Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - David Rooke
- ProTEM Services Ltd, Horsham, RH12 4BD, West Sussex, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion, SY23 3DA, UK.
| | - Ad P Koets
- Wageningen Bioveterinary Research, 8221 RA, Lelystad, The Netherlands. .,Faculty of Veterinary Medicine, Population Health Systems, Utrecht University, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Knific T, Ocepek M, Kirbiš A, Krt B, Prezelj J, Gethmann JM. Quantitative Risk Assessment of Exposure to Mycobacterium avium subsp. paratuberculosis (MAP) via Different Types of Milk for the Slovenian Consumer. Foods 2022; 11:foods11101472. [PMID: 35627042 PMCID: PMC9140596 DOI: 10.3390/foods11101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to assess the risk of exposure to Mycobacterium avium subsp. paratuberculosis (MAP) via milk for the Slovenian consumer. MAP is suspected to be associated with several diseases in humans, therefore the risk of exposure should be better understood. The primary source of MAP for humans is thought to be cattle, in which MAP causes paratuberculosis or Johne’s disease. We developed a stochastic quantitative risk assessment model using Monte Carlo simulations. Considering the assumptions and uncertainties, we estimated the overall risk of exposure to MAP via milk to be low. For people consuming raw milk from MAP positive farms, the risk was high. On-farm pasteurisation reduced the risk considerably, but not completely. The risk of exposure via pasteurised retail milk was most likely insignificant. However, with a higher paratuberculosis prevalence the risk would also increase. Given the popularity of raw milk vending machines and homemade dairy products, this risk should not be ignored. To reduce the risk, consumers should heat raw milk before consumption. To prevent a potential public health scare and safeguard farmers’ livelihoods, a reduction in paratuberculosis prevalence should be sought. Our results show that culling clinically infected cows was insufficient to reduce milk contamination with MAP.
Collapse
Affiliation(s)
- Tanja Knific
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Matjaž Ocepek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (M.O.); (B.K.)
| | - Andrej Kirbiš
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia;
| | - Branko Krt
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (M.O.); (B.K.)
| | - Jasna Prezelj
- Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia;
- Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
- Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, 1000 Ljubljana, Slovenia
| | - Jörn M. Gethmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| |
Collapse
|
15
|
Canive M, Badia-Bringué G, Vázquez P, Garrido JM, Juste RA, Fernandez A, González-Recio O, Alonso-Hearn M. A Genome-Wide Association Study for Tolerance to Paratuberculosis Identifies Candidate Genes Involved in DNA Packaging, DNA Damage Repair, Innate Immunity, and Pathogen Persistence. Front Immunol 2022; 13:820965. [PMID: 35464478 PMCID: PMC9019162 DOI: 10.3389/fimmu.2022.820965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Although the genetic susceptibility to diseases has been extensively studied, the genetic loci and the primary molecular and cellular mechanisms that control disease tolerance are still largely unknown. Bovine paratuberculosis (PTB) is an enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). PTB affects cattle worldwide and represents a major issue on animal health. In this study, the associations between host genetic and PTB tolerance were investigated using the genotypes from 277 Spanish Holstein cows with two distinct phenotypes: cases) infected animals with positive PCR and bacteriological culture results but without lesions in gut tissues (N= 24), and controls) animals with negative PCR and culture results but with PTB-associated lesions (N= 253). DNA from peripheral blood of the study population was genotyped with the Bovine EuroG MD Bead Chip, and the corresponding genotypes were imputed to whole-genome sequencing (WGS) data. A genome-wide association study was performed using the WGS data and the defined phenotypes in a case-control approach. A total of 142 single nucleotide polymorphisms (SNPs) were associated (false discovery rate ≤ 0.05, P values between 1.5 × 10-7 and 5.7 × 10-7) with tolerance (heritability= 0.55). The 40 SNPs with P-values < 5 × 10-7 defined 9 QTLs and 98 candidate genes located on BTA4, BTA9, BTA16, BTA25, and BTA26. Some of the QTLs identified in this study overlap with QTLs previously associated with PTB, bovine tuberculosis, mastitis, somatic cell score, bovine diarrhea virus persistent infection, tick resistance, and length of productive life. Two candidate genes with important roles in DNA damage response (ERCC4 and RMI2) were identified on BTA25. Functional analysis using the 98 candidate genes revealed a significant enrichment of the DNA packaging process (TNP2/PRMI1/PRM2/PRM3). In addition, the TNF-signaling (bta04668; TRAF5/CREB5/CASP7/CHUK) and the toxoplasmosis (bta05145; TGFβ2/CHUK/CIITA/SOCS1) pathways were significantly enriched. Interestingly, the nuclear Factor NF-κβ Inhibitor Kinase Alpha (CHUK), a key molecule in the regulation of the NF-κB pathway, was enriched in both pathways. Taken together, our results define a distinct immunogenetic profile in the PTB-tolerant animals designed to control bacterial growth, modulate inflammation, limit tissue damage and increase repair, thus reducing the severity of the disease.
Collapse
Affiliation(s)
- María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Joseba M Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Almudena Fernandez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC, Madrid, Spain.,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|