1
|
Fan S, Zheng M, Ren A, Mao H, Long D, Yang L. Effects of High-Concentrate-Induced SARA on Antioxidant Capacity, Immune Levels and Rumen Microbiota and Function in Goats. Animals (Basel) 2024; 14:263. [PMID: 38254432 PMCID: PMC10812789 DOI: 10.3390/ani14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
This study aims to explore the antioxidant, immune, and enzyme metabolism aspects in goats experiencing subacute ruminal acidosis (SARA). Furthermore, we seek to elucidate the relationship between the symbiotic microbiota of goats and their metabolic function. Sixteen goats were equally divided into two groups and fed a normal-concentrate diet (NC, 55% concentrate) or a high-concentrate diet (HC, 90% concentrate) for five weeks. We found that the HC diet reduced the total antioxidant capacity (T-AOC) (p = 0.022) and increased interleukin-1β (IL-1β) (p = 0.015), interleukin-4 (IL-4) (p = 0.008) and interleukin-6 (IL-6) (p = 0.002) concentration of goats. Simultaneously, the HC diet significantly increased the concentrations of alkaline phosphatase (ALP) and amylase (AMY) in the blood and rumen fluid of goats (p < 0.05). Microbial analysis in the rumen of goats revealed that the HC diet decreased bacterial richness and diversity, as evidenced by the changed observed species, Chao 1, PD whole tree and Shannon when compared to the NC diet (p < 0.01). The proportion of Proteobacteria increased while that of Spirochaetes and Fibrobacteres significantly decreased with the HC diet (p < 0.05). The Christensenellaceae_R-7_group and Ruminococcaceae_UCG-010 in rumen was notably decreased when a diet was switched from 55% concentrate diet to 90% concentrate diet (p < 0.05). Additionally, microbial functional potentials deduced that the HC diet significantly increased the abundance of the citrate cycle (TCA cycle) (ko00020) associated with carbohydrate metabolism (p = 0.028). Furthermore, the HC diet significantly increased the glutathione metabolism (ko00480) associated with the metabolism of other amino acids (p = 0.008). Our findings suggested that SARA reduced the total antioxidant capacity and increased levels of inflammatory factors in goats, as well as decreased rumen bacterial species and abundance.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China; (S.F.); (D.L.)
| |
Collapse
|
2
|
Du T, Li P, Niu Q, Pu G, Wang B, Liu G, Li P, Niu P, Zhang Z, Wu C, Hou L, Hedemann MS, Zhao Q, Huang R. Effects of Varying Levels of Wheat Bran Dietary Fiber on Growth Performance, Fiber Digestibility and Gut Microbiota in Erhualian and Large White Pigs. Microorganisms 2023; 11:2474. [PMID: 37894132 PMCID: PMC10609096 DOI: 10.3390/microorganisms11102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
To evaluate the tolerance of a high-fiber diet in Erhualian pigs (Er-HL), the present investigation systematically investigated the ramifications of varying wheat bran fiber levels, specified as total dietary fiber (TDF) values of 14.07%, 16.32%, 17.99%, and 18.85%, on growth performance, fiber digestibility and gut microbiota in Er-HL, large Large White pigs (L-LW, the same physiological stage as the Er-HL) and small Large White pigs (S-LW, the same body weight as the Er-HL). Our results revealed that fiber levels exerted no discernable impact on growth performance (average daily feed intake (ADFI), and average daily gain (ADG)) of Er-HL (p > 0.05). Conversely, L-LW exhibited a decrease in ADFI and ADG with increasing fiber levels (p < 0.05). Notably, the apparent total tract digestibility (ATTD) of various fiber components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, TDF and insoluble dietary fiber (IDF), in Er-HL were significantly higher than those in S-LW and L-LW irrespective of diets (p < 0.05). The ATTD of cellulose and hemicellulose in Er-HL significantly decreased with increasing fiber levels (p < 0.05), yet remained statistically indifferent when comparing the 7%-wheat-bran-replaced diet (7% WRB, TDF 16.32%) to the basal diet (TDF 14.07%) (p > 0.05). The cecal microbiota of Er-HL had higher richness estimators (Chao1 and ACE) than those of S-LW and L-LW irrespective of diets (p < 0.01). Breed serves as a pivotal determinant in shaping swine gut microbiota. Thirteen genera were selected as the key bacteria related to high fiber digestibility of Er-HL. Further functional examination of these key genera elucidated an enrichment of pathways pertinent to carbohydrate metabolism in Er-HL samples compared with S-LW and L-LW samples. In summary, Er-HL exhibited high-fiber tolerance both in terms of growth performance and fiber digestibility compared with Large White pigs. Specifically, the ATTD of NDF, ADF, hemicellulose, IDF and TDF were significantly higher in Er-HL compared with L-LW and S-LW, irrespective of diets. Fiber level exerted no discernable impact on growth performance (ADFI, ADG) and the ATTD of fiber (NDF, ADF, IDF and TDF) in Er-HL. The optimum fiber level of the Er-HL was identified as 7% WRB (TDF 16.32%). Thirteen genera were ascertained to significantly contribute to high fiber digestibility of Er-HL, correlating with an enhancement of carbohydrate metabolism pathways.
Collapse
Affiliation(s)
- Taoran Du
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
| | - Pinghua Li
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Qing Niu
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Guang Pu
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
| | - Binbin Wang
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
| | - Gensheng Liu
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
| | - Pinghui Li
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Zongping Zhang
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Chengwu Wu
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Liming Hou
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | | | - Qingbo Zhao
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
| | - Ruihua Huang
- Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; (T.D.); (P.L.)
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| |
Collapse
|
3
|
Chen F, Wang Y, Wang K, Chen J, Jin K, Peng K, Chen X, Liu Z, Ouyang J, Wang Y, Zhang X, Zou H, Zhou J, He B, Lin Q. Effects of Litsea cubeba essential oil on growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora of pigs. Front Pharmacol 2023; 14:1166022. [PMID: 37465523 PMCID: PMC10350539 DOI: 10.3389/fphar.2023.1166022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of Litsea cubeba essential oil (LCO) on the growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora in fattening pigs. A total of 120 pigs were randomly assigned to five groups, with six replicate pens per treatment and four pigs per pen, and they were fed basal diet, chlortetracycline (CTC), and low-, medium-, and high-concentration LCO. The results of the study showed that compared with the control treatment and CTC addition treatment of the basic diet, the catalase level in the serum of the pigs treated with 500 mg/kg LCO in the diet of finishing pigs was significantly increased (p < 0.05). The apparent digestibility of crude protein, crude ash, and calcium in pigs with different levels of LCO was significantly increased compared with the control treatments fed the basal diet (p < 0.05). In addition, compared with the control treatment fed the basal diet and the treatment with CTC, the apparent digestibility of ether extract in pigs treated with medium-dose LCO was significantly increased (p < 0.05), and the apparent digestibility of pigs was significantly increased after the addition of low-dose LCO (p < 0.05). Among the genera, the percentage abundance of SMB53 (p < 0.05) was decreased in the feces of the CTC group when compared to that in the medium-LCO group. At the same time, the relative abundance of L7A_E11 was markedly decreased in the feces of the control and medium- and high-concentration LCO group than that in the CTC group (p < 0.05). In conclusion, adding the level of 250 mg/kg LCO in the diet of pig could improve the growth performance and blood physiological and biochemical indicators of pigs, improve the antioxidant level of body and the efficiency of digestion and absorption of nutrients, and show the potential to replace CTC.
Collapse
Affiliation(s)
- Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yushi Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jiayi Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Ke Jin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kaiqiang Peng
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Xu Chen
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Zhimou Liu
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Jiang Ouyang
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yong Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaoya Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haowei Zou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Zhou
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Comparison of the Effects between Tannins Extracted from Different Natural Plants on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Flora of Broiler Chickens. Antioxidants (Basel) 2023; 12:antiox12020441. [PMID: 36829999 PMCID: PMC9952188 DOI: 10.3390/antiox12020441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, four plant tannins, including AT (Acacia mearnsii tannin, 68%), CT (Castanea sativa tannin, 60%), QT (Schinopsis lorenzii tannin, 73%) and TT (Caesalpinia spinosa tannin, 50%) were added to broiler diets for 42 days to evaluate and compare their effects on growth performance, antioxidant capacity, immune performance and gut microbiota in broilers. The results showed that the supplementation of five tannins could increase the production of T-AOC, GSH-Px, SOD and CAT and reduce the production of MDA in the serum of broilers (p < 0.01), but the antioxidant effect of the AT group was lower than that of the other three groups (p < 0.01). All four tannins decreased the level of the pro-inflammatory factor IL-1β and increased the level of the anti-inflammatory factor IL-10 (p < 0.01). CT, QT and TT decreased the levels of pro-inflammatory factors IL-6 and TNF-α (p < 0.01), while AT and CT increased the level of IL-2 in serum (p < 0.01). Supplementation with four tannins also increased the levels of IgG, IgM, IgA and sIgA in serum (p < 0.01) and the levels of ZO-1, claudin-1 and occludin in the jejunum (p < 0.01). The detection results of ALT and AST showed that CT, QT and TT decreased the concentrations of ALT and AST in serum (p < 0.01). The results of the gut microbiota showed that the abundance of Clostridia and Subdoligranulum increased, and the abundance of Oscillospiraceae decreased, compared to the control group after adding the four tannins to the diets (p > 0.05). In addition, CT, QT and TT decreased the abundance of Lactobacillus and increased the abundance of Bacteroides compared to the control group, while AT showed the opposite result (p > 0.05). Overall, our study shows that tannins derived from different plants have their own unique effects on broilers. AT and CT can promote broilers' growth better than other tannins, CT has the best ability to improve immune and antioxidant properties, and QT and TT have the best effect on broilers' liver protection.
Collapse
|
5
|
Wang K, Zhou M, Gong X, Zhou Y, Chen J, Ma J, Zhang P. Starch-protein interaction effects on lipid metabolism and gut microbes in host. Front Nutr 2022; 9:1018026. [PMID: 36466418 PMCID: PMC9709417 DOI: 10.3389/fnut.2022.1018026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 07/20/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of different starch and protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 160 male mice were randomly assigned to sixteen groups and fed a 4 × 4 Latin square design with dietary protein concentrations of 16, 18, 20, and 22%, and starch concentrations of 50, 52, 54, and 56%, respectively. The results of the study showed that different proportions of starch and protein had obvious effects on the liver index of mice, and there was a significant interaction between starch and protein on the liver index (p = 0.005). Compared with other protein ratio diets, 18% protein diet significantly increased the serum TBA concentration of mice (p < 0.001), and different starch ratio diets had no effect on serum TBA concentration (p = 0.442). It was proved from the results of ileal tissue HE staining that the low protein diet and the low starch diet were more favorable. There was a significant interaction between diets with different starch and protein levels on Bacteroidetes, Firmicutes and Proteobacteria abundance in feces of mice (p < 0.001). Compared with 16 and 18% protein ratio diets, both 20 and 22% protein diets significantly decreased the Parabacteroides and Alistipes abundance in feces of mice (p < 0.05), and 52% starch ratio diet significantly decreased the Parabacteroides and Alistipes abundance than 50% starch ratio diet of mice (p < 0.05). There was a significant interaction between diets with different starch and protein levels on Parabacteroides (p = 0.014) and Alistipes (p = 0.001) abundance in feces of mice. Taken together, our results suggest that a low protein and starch diet can alter lipid metabolism and gut microbes in mice.
Collapse
Affiliation(s)
- Kaijun Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyu Gong
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuqiao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiayi Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peihua Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
6
|
Wang K, Ma J, Li Y, Han Q, Yin Z, Zhou M, Luo M, Chen J, Xia S. Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice. Front Nutr 2022; 9:1024722. [PMID: 36407543 PMCID: PMC9670120 DOI: 10.3389/fnut.2022.1024722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/20/2023] Open
Abstract
Artemisia argyi leaf is a well-known species in traditional Chinese medicine, and its essential oil (AAEO) has been identified to exert various physiological activities. The aim of this study was to investigate the effects of AAEO on lipid metabolism and the potential microbial role in high-fat diet (HFD)-fed mice. A total of 50 male mice were assigned to five groups for feeding with a control diet (Con), a high-fat diet (HFD), and the HFD plus the low (LEO), medium (MEO), and high (HEO) doses of AAEO. The results demonstrated that dietary HFD markedly increased the body weight gain compared with the control mice (p < 0.05), while mice in the HEO group showed a lower body weight compared to the HFD group (p < 0.05). The weight of fatty tissues and serum lipid indexes (TBA, HDL, and LDL levels) were increased in response to dietary HFD, while there was no significant difference in AAEO-treated mice (p < 0.05). The jejunal villus height was dramatically decreased in HFD-fed mice compared with the control mice, while HEO resulted in a dramatically higher villus height than that in the HFD group (p < 0.05). Microbial α-diversity was not changed in this study, but β-diversity indicated that microbial compositions differed in control, HFD, and EO subjects. At the genus level, the relative abundance of Bacteroides was greater (p < 0.05) in the feces of the Con group when compared to the HFD and EO groups. On the contrary, the abundance of Muribaculum was lower in the Con group compared to the HFD and EO groups (p < 0.05). Although the Muribaculum in the EO group was lower than that in the HFD group, there was no statistically notable difference between the HFD and EO groups (p > 0.05). Simultaneously, the relative abundance of Alistipes (p < 0.05) and Rikenella (p < 0.05) was also dramatically higher in the Con group than in the HFD and EO groups. The abundance of norank_f__norank_o__Clostridia_UCG-014 was lower in the HFD or EO group than in the Con group (p < 0.05). In conclusion, the results suggested that HEO could affect body weight and lipid metabolism without gut microbes in ICR mice, and it was beneficial for the structure of the jejunal epithelial tissue.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yunxia Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qi Han
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhangzheng Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Minyi Luo
- Agricultural Service Center, Xiaolan Town, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Siting Xia
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
7
|
Wang K, Yang A, Peng X, Lv F, Wang Y, Cui Y, Wang Y, Zhou J, Si H. Linkages of Various Calcium Sources on Immune Performance, Diarrhea Rate, Intestinal Barrier, and Post-gut Microbial Structure and Function in Piglets. Front Nutr 2022; 9:921773. [PMID: 35782941 PMCID: PMC9248811 DOI: 10.3389/fnut.2022.921773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of different sources of calcium on immune performance, diarrhea rate, intestinal barrier, and post-intestinal flora structure and function in weaned piglets. A total of 1,000 weaned piglets were randomly assigned to five groups 10 replicate pens per treatment, 20 piglets per pen and fed calcium carbonate, calcium citrate, multiple calcium, and organic trace minerals of different concentrations of acidifier diets. The results of the study showed that the replacement of calcium carbonate with calcium citrate and multiple calcium had almost no significant effect on immune indexes (IL-1β, IL-6, IL-10, TNF-α) of piglets compared with the control group (p > 0.05). The five groups did not show a change in the diarrhea rate and diarrhea index (p > 0.05). The diet containing multiple calcium dramatically decreased the TP compared to the C and L diet (p < 0.05). No significant difference in HDL was noted in the five groups (p > 0.05). However, the concentration of LDL in blood in the multiple calcium group was significantly higher than that in groups L and D (p < 0.05). Moreover, the concentration of Glu in blood in the multiple calcium group was significantly higher than that in group C (p < 0.05). Compared with the control group, calcium citrate plus organic trace minerals diet markedly increased UCG-005 abundance in the colon (p < 0.05). In addition, the relative abundance of Prevotellaceae_NK3B31_group had an upward trend in the colon of the M group compared to the D group (p = 0.070). Meanwhile, calcium citrate plus organic trace minerals diet markedly increased Clostridium_sensu_stricto_1 abundance in the colon (p < 0.05). Metagenomic predictions by PICRUSt suggested that the colonic and fecal microbiota was mainly involved in carbohydrate metabolism, amino acid metabolism, energy metabolism, and metabolism of cofactors and vitamins.
Collapse
Affiliation(s)
- Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Anqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|
8
|
Wang K, Peng X, Yang A, Huang Y, Tan Y, Qian Y, Lv F, Si H. Effects of Diets With Different Protein Levels on Lipid Metabolism and Gut Microbes in the Host of Different Genders. Front Nutr 2022; 9:940217. [PMID: 35782952 PMCID: PMC9240812 DOI: 10.3389/fnut.2022.940217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of different protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 60 mice (30 female and 30 male) were randomly assigned to six groups and fed female mice with low protein diet (FLP), basal protein diet (FBD), and high protein diet (FHP). Similarly, the male mice fed with low protein diet (MLP), basal protein diet (MBD), and high protein diet (MHP). The low protein diet contained 14% CP, the basal diet contained 20% CP, and the high protein diet contained 26% CP. The results of the study showed that both basal and high protein diets significantly reduced the perirenal adipose tissues (PEAT) index in male mice compared to low protein diet (p < 0.05). For the gut, the FHP significantly increased the relative gut weight compared to the FBD and FLP (p < 0.05). At the same time, the FHP also significantly increased the relative gut length compared with the FBD and FLP (p < 0.05). The MHP significantly increased TC concentration compared with the MLP (p < 0.05), and the MBD tended to increase TC concentration compared with the MLP in serum (p = 0.084). The histomorphology result of the jejunum and ileum showed that a low protein diet was beneficial to the digestion and absorption of nutrients in the small intestine of mice. While different protein levels had no effect on the total number of fecal microbial species in mice, different protein levels had a significant effect on certain fecal microbes in mice, the absolute abundance of Verrucomicrobia in the feces of male mice was significantly higher in both high and basal protein diets than in the low protein diet (p < 0.05). The high protein diet significantly reduced the absolute abundance of Patescibacteria in the feces of female mice compared to both the basal and low protein diets (p < 0.05). The absolute abundance of Patescibacteria in male feces was not affected by dietary protein levels (p > 0.05). Taken together, our results suggest that a low protein diet can alter fat deposition and lipid metabolism in mice, and that it benefited small intestinal epithelial structure and microbes.
Collapse
Affiliation(s)
- Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yiqin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxiao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yajing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|