1
|
Alotaibi BS, Wu CH, Khan M, Nawaz M, Chen CC, Ali A. African swine fever; insights into genomic aspects, reservoirs and transmission patterns of virus. Front Vet Sci 2024; 11:1413237. [PMID: 39193370 PMCID: PMC11347335 DOI: 10.3389/fvets.2024.1413237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 08/29/2024] Open
Abstract
African swine fever is a hemorrhagic disease of pigs with high mortality rates. Since its first characterization in 1921, there has been sufficient information about African swine fever virus (ASFV) and related diseases. The virus has been found and maintained in the sylvatic cycle involving ticks and domestic and wild boars in affected regions. The ASFV is spread through direct and indirect contact with infected pigs, their products and carrier vectors especially Ornithodoros ticks. Severe economic losses and a decline in pig production have been observed in ASFV affected countries, particularly in sub-Saharan Africa and Europe. At the end of 2018, the ASFV adversely affected China, the world's leading pork-producer. Control strategies for the disease remained challenging due to the unavailability of effective vaccines and the lack of successful therapeutic measures. However, considerable efforts have been made in recent years to understand the biology of the virus, surveillance and effective control measures. This review emphasizes and summarizes the current state of information regarding the knowledge of etiology, epidemiology, transmission, and vaccine-based control measures against ASFV.
Collapse
Affiliation(s)
- Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Chia-Hung Wu
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Majid Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohsin Nawaz
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
2
|
Ringo RS, Choonnasard A, Okabayashi T, Saito A. Conserved Antagonization of Type I Interferon Signaling by Arterivirus GP5 Proteins. Viruses 2024; 16:1240. [PMID: 39205214 PMCID: PMC11358952 DOI: 10.3390/v16081240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Arteriviruses can establish persistent infections in animals such as equids, pigs, nonhuman primates, rodents, and possums. Some Arteriviruses can even cause overt and severe diseases such as Equine Arteritis in horses and Porcine Reproductive and Respiratory Syndrome in pigs, leading to huge economic losses. Arteriviruses have evolved viral proteins to antagonize the host cell's innate immune responses by inhibiting type I interferon (IFN) signaling, assisting viral evasion and persistent infection. So far, the role of the Arterivirus glycoprotein 5 (GP5) protein in IFN signaling inhibition remains unclear. Here, we investigated the inhibitory activity of 47 Arterivirus GP5 proteins derived from various hosts. We demonstrated that all GP5 proteins showed conserved activity for antagonizing TIR-domain-containing adapter proteins inducing interferon-β (TRIF)-mediated IFN-β signaling through TRIF degradation. In addition, Arterivirus GP5 proteins showed a conserved inhibitory activity against IFN-β signaling, induced by either pig or human TRIF. Furthermore, certain Arterivirus GP5 proteins could inhibit the induction of IFN-stimulated genes. These findings highlight the role of Arterivirus GP5 proteins in supporting persistent infection.
Collapse
Affiliation(s)
- Rissar Siringo Ringo
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Amonrat Choonnasard
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
3
|
Arrieta-Mendoza D, Garces B, Hidalgo AA, Neira V, Ramirez G, Neira-Carrillo A, Bucarey SA. Design of a New Vaccine Prototype against Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae and M. hyorhinis Based on Multiple Antigens Microencapsulation with Sulfated Chitosan. Vaccines (Basel) 2024; 12:550. [PMID: 38793801 PMCID: PMC11125950 DOI: 10.3390/vaccines12050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This work evaluated in vivo an experimental-multivalent-vaccine (EMV) based on three Porcine Respiratory Complex (PRC)-associated antigens: Porcine Circovirus Type 2 (PCV2), M. hyopneumoniae (Mhyop) and M. hyorhinis (Mhyor), microencapsulated with sulfated chitosan (M- ChS + PRC-antigens), postulating chitosan sulphate (ChS) as a mimetic of the heparan sulfate receptor used by these pathogens for cell invasion. The EMV was evaluated physicochemically by SEM (Scanning-Electron-Microscopy), EDS (Energy-Dispersive-Spectroscopy), Pdi (Polydispersity-Index) and zeta potential. Twenty weaned pigs, distributed in four groups, were evaluated for 12 weeks. The groups 1 through 4 were as follows: 1-EMV intramuscular-route (IM), 2-EMV oral-nasal-route (O/N), 3-Placebo O/N (M-ChS without antigens), 4-Commercial-vaccine PCV2-Mhyop. qPCR was used to evaluate viral/bacterial load from serum, nasal and bronchial swab and from inguinal lymphoid samples. Specific humoral immunity was evaluated by ELISA. M-ChS + PRC-antigens measured between 1.3-10 μm and presented low Pdi and negative zeta potential, probably due to S (4.26%). Importantly, the 1-EMV protected 90% of challenged animals against PCV2 and Mhyop and 100% against Mhyor. A significant increase in antibody was observed for Mhyor (1-EMV and 2-EMV) and Mhyop (2-EMV), compared with 4-Commercial-vaccine. No difference in antibody levels between 1-EMV and 4-Commercial-vaccine for PCV2-Mhyop was observed. Conclusion: The results demonstrated the effectiveness of the first EMV with M-ChS + PRC-antigens in pigs, which were challenged with Mhyor, PCV2 and Mhyop, evidencing high protection for Mhyor, which has no commercial vaccine available.
Collapse
Affiliation(s)
- Darwuin Arrieta-Mendoza
- Doctoral Program in Forestry, Agricultural and Veterinary Sciences, South Campus, University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile;
| | - Bruno Garces
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, 2320 Sazié, Santiago 8320000, Chile; (B.G.); (A.A.H.)
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, 2320 Sazié, Santiago 8320000, Chile; (B.G.); (A.A.H.)
| | - Victor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile; (V.N.); (G.R.)
| | - Galia Ramirez
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile; (V.N.); (G.R.)
| | - Andrónico Neira-Carrillo
- Laboratorio Polyforms, Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile;
| | - Sergio A. Bucarey
- Centro Biotecnológico Veterinario, Biovetec, Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago 8320000, Chile
| |
Collapse
|
4
|
Zhou L, Zhou H, Fan Y, Wang J, Zhang R, Guo Z, Li Y, Kang R, Zhang Z, Yang D, Liu J. Metagenomics to Identify Viral Communities Associated with Porcine Respiratory Disease Complex in Tibetan Pigs in the Tibetan Plateau, China. Pathogens 2024; 13:404. [PMID: 38787256 PMCID: PMC11124006 DOI: 10.3390/pathogens13050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Tibetan pig is a unique pig breed native to the Qinghai-Tibet Plateau. To investigate viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan province. Following library construction and Illunima Novaseq sequencing, 18 distinct viruses belonging to 15 viral taxonomic families were identified in Tibetan pigs with PRDC. Among the 18 detected viruses, 3 viruses were associated with PRDC, including porcine circovirus type 2 (PCV-2), Torque teno sus virus (TTSuV), and porcine cytomegalovirus (PCMV). The genomic sequences of two PCV-2 strains, three TTSuV strains, and one novel Porprismacovirus strain were assembled by SOAPdenovo software (v2). Sequence alignment and phylogenetic analysis showed that both PCV-2 strains belonged to PCV-2d, three TTSuVs were classified to TTSuV2a and TTSuV2b genotypes, and the Porprismacovirus strain PPMV-SCgz-2022 showed a close genetic relationship with a virus of human origin. Recombination analysis indicated that PPMV-SCgz-2022 may have originated from recombination events between Human 16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain. Furthermore, the high proportion of single infection or co-infection of PCV2/TTSuV2 provides insight into PRDC infection in Tibetan pigs. This is the first report of the viral communities in PRDC-affected Tibetan pigs in this region, and the results provides reference for the prevention and control of respiratory diseases in these animals.
Collapse
Affiliation(s)
- Long Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Han Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Yandi Fan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Jinghao Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Rui Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Zijing Guo
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Yanmin Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
| | - Runmin Kang
- Sichuan Animal Science Academy, Sichuan Provincial Key Laboratory of Animal Breeding and Genetics, Chengdu 610066, China;
| | - Zhidong Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.Z.); (H.Z.); (Y.F.); (J.W.); (R.Z.); (Z.G.); (Y.L.); (J.L.)
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China
| |
Collapse
|
5
|
Ruedas-Torres I, Sánchez-Carvajal JM, Salguero FJ, Pallarés FJ, Carrasco L, Mateu E, Gómez-Laguna J, Rodríguez-Gómez IM. The scene of lung pathology during PRRSV-1 infection. Front Vet Sci 2024; 11:1330990. [PMID: 38566751 PMCID: PMC10985324 DOI: 10.3389/fvets.2024.1330990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases for the pig industry worldwide. The disease was firstly reported in 1987 and became endemic in many countries. Since then, outbreaks caused by strains of high virulence have been reported several times in Asia, America and Europe. Interstitial pneumonia, microscopically characterised by thickened alveolar septa, is the hallmark lesion of PRRS. However, suppurative bronchopneumonia and proliferative and necrotising pneumonia are also observed, particularly when a virulent strain is involved. This raises the question of whether the infection by certain strains results in an overstimulation of the proinflammatory response and whether there is some degree of correlation between the strain involved and a particular pattern of lung injury. Thus, it is of interest to know how the inflammatory response is modulated in these cases due to the interplay between virus and host factors. This review provides an overview of the macroscopic, microscopic, and molecular pathology of PRRSV-1 strains in the lung, emphasising the differences between strains of different virulence.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA Porton Down), Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | | | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Calderon-Rico F, Bravo-Patiño A, Mendieta I, Perez-Duran F, Zamora-Aviles AG, Franco-Correa LE, Ortega-Flores R, Hernandez-Morales I, Nuñez-Anita RE. Glycoprotein 5-Derived Peptides Induce a Protective T-Cell Response in Swine against the Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2023; 16:14. [PMID: 38275949 PMCID: PMC10819526 DOI: 10.3390/v16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster doses. Twenty-one-day-old pigs were allocated into four groups (seven pigs per group): control (PBS), vehicle (carrier), PTC1, and PTC2. Cytokine levels were measured at 2 days post-immunization (DPI) from serum samples. Cytotoxic T-lymphocytes (CTLs, CD8+) from peripheral blood were quantified via flow cytometry at 42 DPI. The cytotoxicity was evaluated by co-culturing primed lymphocytes with PRRSV derived from an infectious clone. The PTC2 peptide increased the serum concentrations of pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-8) and cytokines that activate the adaptive cellular immunity associated with T-lymphocytes (i.e., IL-4, IL-6, IL-10, and IL-12). The concentration of CTLs (CD8+) was significantly higher in groups immunized with the peptides, which suggests a proliferative response in this cell population. Primed CTLs from immunized pigs showed cytolytic activity in PRRSV-infected cells in vitro. PTC1 and PTC2 peptides induced a protective T-cell-mediated response in pigs immunized against PRRSV, due to the presence of T epitopes in their sequences.
Collapse
Affiliation(s)
- Fernando Calderon-Rico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alejandro Bravo-Patiño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Irasema Mendieta
- Posgrado en Ciencias Quimico-Biológicas, Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Querétaro PC 76010, Mexico;
| | - Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Alicia Gabriela Zamora-Aviles
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Luis Enrique Franco-Correa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Roberto Ortega-Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| | - Ilane Hernandez-Morales
- Escuela Nacional de Estudios Superiores Unidad Leon, Universidad Nacional Autonoma de Mexico, Blv. UNAM No. 2011, Leon PC 37684, Guanajuato, Mexico;
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolas de Hidalgo, Km. 9.5 S/N carretera Morelia-Zinapecuaro, La Palma, Tarimbaro PC 58893, Mexico; (F.C.-R.); (A.B.-P.); (F.P.-D.); (A.G.Z.-A.); (L.E.F.-C.); (R.O.-F.)
| |
Collapse
|
7
|
Bujold AR, Barre AME, Kunkel E, MacInnes JI. Strain-dependent interactions of Streptococcus suis and Glaesserella parasuis in co-culture. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:245-253. [PMID: 37790267 PMCID: PMC10542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/01/2023] [Indexed: 10/05/2023]
Abstract
Streptococcus suis (S. suis) and Glaesserella parasuis (G. parasuis) are ubiquitous colonizers of swine tonsils that can cause systemic disease and death, under undefined conditions. It is not known, however, whether these 2 species interact during initial infection. To investigate whether such interactions occur, the objective of this study was to assess phenotypic differences between mono-and co-cultures of S. suis and G. parasuis when representative strains with different virulence potential were co-cultured in vitro. In cross-streak screening experiments, some G. parasuis (GP) serovar strains (GP3, GP4, GP5) exhibited altered morphology with some S. suis (SS) serovar strains, such as SS2, but not with SS1. Co-culture with GP5 reduced hemolytic activity of SS1, but not of SS2. Although both SS strains outgrew GP isolates in biofilm co-cultures, strain type affected the number of planktonic or sessile cells in co-culture biofilms. Numbers of sessile SS1 increased in co-cultures, but not of GP3. Both planktonic and sessile SS2 increased in co-culture, whereas GP5 decreased. Sessile SS1 increased, but planktonic GP5 decreased in co-culture and planktonic SS2 increased, but sessile GP3 decreased when grown together. The SS2 strain had a competitive advantage over GP3 during mid-exponential co-culture in broth. Streptococcus suis is predicted to use more unique carbon sources, suggesting that S. suis outcompetes G. parasuis in growth and nutrient consumption. This work provides direction for future studies of phenotypic and genotypic interactions between these and other swine tonsil co-colonizers.
Collapse
Affiliation(s)
- Adina R Bujold
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Allison M E Barre
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Elizabeth Kunkel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Janet I MacInnes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| |
Collapse
|
8
|
Lagua EB, Mun HS, Ampode KMB, Chem V, Kim YH, Yang CJ. Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming. Animals (Basel) 2023; 13:1860. [PMID: 37889795 PMCID: PMC10251864 DOI: 10.3390/ani13111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine respiratory disease complex is an economically important disease in the swine industry. Early detection of the disease is crucial for immediate response to the disease at the farm level to prevent and minimize the potential damage that it may cause. In this paper, recent studies on the application of artificial intelligence (AI) in the early detection and monitoring of respiratory disease in swine have been reviewed. Most of the studies used coughing sounds as a feature of respiratory disease. The performance of different models and the methodologies used for cough recognition using AI were reviewed and compared. An AI technology available in the market was also reviewed. The device uses audio technology that can monitor and evaluate the herd's respiratory health status through cough-sound recognition and quantification. The device also has temperature and humidity sensors to monitor environmental conditions. It has an alarm system based on variations in coughing patterns and abrupt temperature changes. However, some limitations of the existing technology were identified. Substantial effort must be exerted to surmount the limitations to have a smarter AI technology for monitoring respiratory health status in swine.
Collapse
Affiliation(s)
- Eddiemar B. Lagua
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, 255 Jungangno, Suncheon 57922, Republic of Korea
| | - Hong-Seok Mun
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Department of Multimedia Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Keiven Mark B. Ampode
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Department of Animal Science, College of Agriculture, Sultan Kudarat State University, Tacurong City 9800, Philippines
| | - Veasna Chem
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
| | - Young-Hwa Kim
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Chul-Ju Yang
- Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (E.B.L.); (H.-S.M.); (K.M.B.A.); (V.C.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, 255 Jungangno, Suncheon 57922, Republic of Korea
| |
Collapse
|
9
|
Chrun T, Maze EA, Roper KJ, Vatzia E, Paudyal B, McNee A, Martini V, Manjegowda T, Freimanis G, Silesian A, Polo N, Clark B, Besell E, Booth G, Carr BV, Edmans M, Nunez A, Koonpaew S, Wanasen N, Graham SP, Tchilian E. Simultaneous co-infection with swine influenza A and porcine reproductive and respiratory syndrome viruses potentiates adaptive immune responses. Front Immunol 2023; 14:1192604. [PMID: 37287962 PMCID: PMC10242126 DOI: 10.3389/fimmu.2023.1192604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8β+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8β+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Noemi Polo
- The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Alejandro Nunez
- Pathology and Animal Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|