1
|
Marques BLM, Passos TS, Dantas AI, de Lima MAA, Moreira SMG, Rodrigues VM, do Nascimento Dantas MR, Lopes PS, Gomes APB, da Silva Fernandes R, Júnior FHX, Sousa Júnior FCD, de Assis CF. Nanoencapsulation of quinoa oil enhanced the antioxidant potential and inhibited digestive enzymes. Food Res Int 2024; 196:115066. [PMID: 39614496 DOI: 10.1016/j.foodres.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
Quinoa oil is rich in unsaturated fatty acids and vitamin E, but its instability limits its application in food, pharmaceutical, and cosmetic products. Nanoencapsulation emerges as a promising strategy to promote water dispersibility, preserve and enhance functional properties, and increase the bioavailability of bioactive compounds. This study encapsulated quinoa oil through O/W emulsification, using porcine gelatin (OG) and isolated whey protein (OWG) as encapsulating agents. The particles were characterized by different physical and chemical methods and evaluated in vitro for cytotoxicity using Chinese hamster ovary (CHO) cells, human hepatocarcinoma cells (HepG2) and epithelial cells, and bioactive potential through the determination of Total Antioxidant Capacity (CAT) (acidic and neutral media) and iron chelation, and inhibition of digestive enzymes (α-amylase and amyloglucosidase). OG and OWG particles presented smooth surfaces, with an average size between 161 ± 7 and 264 ± 6 nm, with a polydispersity index of 0.11 ± 0.03 and 0.130 ± 0.04, encapsulation efficiency of 74 ± 1.47 % and 83 ± 2.92 %, and water dispersibility >70 %, respectively. Free and nanoencapsulated quinoa oil did not show cytotoxic effects (cell viability >70 %). Nanoencapsulation promoted the enhancement of the antioxidant activity of quinoa oil in the range of 50-63 % in a neutral medium and 96-153 % in an acidic medium than free oil (p < 0.05). OG and OWG also enhanced the inhibition of the enzymes α-amylase (by 5-7 %) and amyloglucosidase (6-9 times more) than free oil (p < 0.05). The results showed that nanoencapsulation increased the potential for quinoa oil application, enabling the development of innovative products.
Collapse
Affiliation(s)
- Bruna Lorena Meneses Marques
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Alyne Ingrydid Dantas
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Malu Andrade Alves de Lima
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor M Rodrigues
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marina R do Nascimento Dantas
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia Santos Lopes
- Departament of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Francisco Canindé de Sousa Júnior
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cristiane Fernandes de Assis
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Dhakal J, Cancio LPM, Deliephan A, Chaves BD, Tubene S. Salmonella Presence and Risk Mitigation in Pet Foods: A Growing Challenge with Implications for Human Health. Compr Rev Food Sci Food Saf 2024; 23:e70060. [PMID: 39530630 PMCID: PMC11605167 DOI: 10.1111/1541-4337.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Pet food is increasingly recognized as a significant vehicle for the transmission of foodborne pathogens to humans. The intimate association between pets and their owners, coupled with the rising trend of feeding pets raw and unprocessed foods, contributes substantially to this issue. Salmonella contamination in pet food can originate from raw materials and feed ingredients, the processing environment, and postprocessing handling and applications. The absence of standardized postprocessing pathogen mitigation steps in the production of dry kibble and treats, along with the lack of validated heat and chemical interventions in raw pet foods, renders pet food susceptible to contamination by pathogens such as Salmonella, Listeria, E. coli, etc. Pets can then serve as carriers of Salmonella, facilitating its transmission to pet owners. Since 1999, there have been over 117 recalls of pet foods due to Salmonella contamination in the United States, with 11 of these recalls linked to human outbreaks. Notably, 5 of the 11 human outbreaks involved multidrug-resistant Salmonella strains. Various antimicrobial interventions, including high-pressure processing, ozone, irradiation, chemical treatments such as organic acids and acidulants, plant-derived antimicrobials, and biological interventions such as bacteriophages, have proven effective against Salmonella in pet foods. This review aims to summarize the prevalence of Salmonella in different types of pet foods, identify common sources of contamination, outline reported outbreaks, and discuss control measures and the regulatory framework governing pet food safety.
Collapse
Affiliation(s)
- Janak Dhakal
- Department of Agriculture, Food and Resource SciencesUniversity of Maryland Eastern ShorePrincess AnneMarylandUSA
| | - Leslie Pearl M. Cancio
- Provincial Science and Technology Office, Davao del SurDepartment of Science and Technology XI (DOST XI)Digos CityPhilippines
| | | | - Byron D. Chaves
- Department of Food Science and TechnologyUniversity of Nebraska–LincolnLincolnNebraskaUSA
| | - Stephan Tubene
- Department of Agriculture, Food and Resource SciencesUniversity of Maryland Eastern ShorePrincess AnneMarylandUSA
| |
Collapse
|
3
|
Hazam PK, Selvaraj SP, Negi A, Lin WC, Chen JY. Use of natural peptide TP4 as a food preservative prevents contamination by fungal pathogens. Food Chem 2024; 455:139874. [PMID: 38838624 DOI: 10.1016/j.foodchem.2024.139874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Molecules of natural origin often possess useful biological activities. For instance, the natural peptide Tilapia Piscidin 4 (TP4) exhibits potent antimicrobial activity against a broad spectrum of pathogens. In this study, we explored the potential application of TP4 as a food preservative, asking whether it can prevent spoilage due to microbial contamination. A preliminary in silico analysis indicated that TP4 should interact strongly with fungal cell membrane components. Hence, we tested the activity of TP4 toward Candida albicans within fruit juice and found that the addition of TP4 could abolish fungal growth. We further determined that the peptide acts via a membranolytic mechanism and displays concentration-dependent killing efficiency. In addition, we showed that TP4 inhibited growth of Rhizopus oryzae in whole fruit (tomato) samples. Based on these findings, we conclude that TP4 should be further evaluated as a potentially safe and green solution to prevent food spoilage.
Collapse
Affiliation(s)
- Prakash Kishore Hazam
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | - Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Abhishek Negi
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|