1
|
Zhan S, Zhang L, Zhong T, Wang L, Guo J, Cao J, Li L, Zhang H. Evaluation of Reference Gene Stability in Goat Skeletal Muscle Satellite Cells during Proliferation and Differentiation Phases. Animals (Basel) 2024; 14:2479. [PMID: 39272264 PMCID: PMC11394193 DOI: 10.3390/ani14172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The process of skeletal muscle development is intricate and involves the regulation of a diverse array of genes. Accurate gene expression profiles are crucial for studying muscle development, making it essential to choose the right reference genes for real-time quantitative PCR (RT-qPCR). In the present study, eight candidate reference genes were identified from our previous transcriptome sequencing analysis of caprine skeletal muscle satellite cells (MuSCs), and two traditional reference genes (ACTB and GAPDH) were assessed. The quantitative levels of the candidate reference genes were determined through the RT-qPCR technique, while the stability of their expression was evaluated utilizing the GeNorm, NormFinder, BestKeeper, and RefFinder programs. Furthermore, the chosen reference genes were utilized for the normalization of the gene expression levels of PCNA and Myf5. It was determined that conventional reference genes, including ACTB and GAPDH, were not appropriate for normalizing target gene expression. Conversely, RPL14 and RPS15A, identified through RNA sequencing analysis, exhibited minimal variability and were identified as the optimal reference genes for normalizing gene expression during the proliferation and differentiation of goat MuSCs. Our research offers a validated panel of optimal reference genes for the detection of differentially expressed genes in goat muscle satellite cells using RT-qPCR.
Collapse
Affiliation(s)
- Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lufei Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Zhao L, Yang H, Li M, Xiao M, Li X, Cheng L, Cheng W, Chen M, Zhao Y. Global gene expression profiling of perirenal brown adipose tissue whitening in goat kids reveals novel genes linked to adipose remodeling. J Anim Sci Biotechnol 2024; 15:47. [PMID: 38481287 PMCID: PMC10938744 DOI: 10.1186/s40104-024-00994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is known to be capable of non-shivering thermogenesis under cold stimulation, which is related to the mortality of animals. In the previous study, we observed that goat BAT is mainly located around the kidney at birth, and changes to white adipose tissue (WAT) in the perirenal adipose tissue of goats within one month after birth. However, the regulatory factors underlying this change is remain unclear. In this study, we systematically studied the perirenal adipose tissue of goat kids in histological, cytological, and accompanying molecular level changes from 0 to 28 d after birth. RESULTS Our study found a higher mortality rate in winter-born goat kids, with goat birthing data statistics. Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d. This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids. Additionally, we found a series of changes of BAT during the first 28 d after birth, such as whitening, larger lipid droplets, decreased mitochondrial numbers, and down-regulation of key thermogenesis-related genes (UCP1, DIO2, UCP2, CIDEA, PPARGC1a, C/EBPb, and C/EBPa). Then, we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats. Furthermore, 12 candidate genes were found to potentially regulate goat BAT thermogenesis. The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes. While apoptosis may play a limited role, it is largely not critical in this transition process. CONCLUSIONS We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids, with notable species differences in the expression of adipose tissue marker genes, and we highlighted some potential marker genes for goat BAT and WAT. Additionally, the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.
Collapse
Affiliation(s)
- Le Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Haili Yang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Minhao Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Min Xiao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xingchun Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Lei Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Wenqiang Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
3
|
Ahlawat S, Vasu M, Choudhary V, Arora R, Sharma R, Mir MA, Singh MK. Comprehensive evaluation and validation of optimal reference genes for normalization of qPCR data in different caprine tissues. Mol Biol Rep 2024; 51:268. [PMID: 38302649 DOI: 10.1007/s11033-024-09268-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Quantitative real-time PCR (qPCR) is a highly reliable method for validating gene expression data in molecular studies due to its sensitivity, specificity, and efficiency. To ensure accurate qPCR results, it's essential to normalize the expression data using stable reference genes. METHODS This study aimed to identify suitable reference genes for qPCR studies in goats by evaluating 18 candidate reference genes (ACTB, BACH1, B2M, GAPDH, HMBS, HPRT1, PGK1, PPIA, PPIB, RPLP0, RPL19, RPS9, RPS15, RPS28, SDHA, TBP, UXT, and YWHAZ) in 10 different caprine tissues (heart, intestine, kidney, liver, lung, muscle, rumen, skin, spleen, and testis). An integrated tool called RefFinder, which incorporates various algorithms like NormFinder, GeNorm, BestKeeper, and ΔCt, was used to assess the stability of expression among these genes. RESULTS After thorough analysis, ACTB, PPIB, and B2M emerged as the most stable reference genes, while RPL19, RPS15, and RPS9 were found to be the least stable. The suitability of the selected internal control genes was further validated through target gene analysis, confirming their efficacy in ensuring accurate gene expression profiling in goats. CONCLUSION The study determined that the geometric average of ACTB, PPIB, and B2M creates an appropriate normalization factor for gene expression studies in goat tissues.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
- Animal Biotechnology Division, ICAR-NBAGR, Karnal, India.
| | - Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Vikas Choudhary
- District Disease Diagnostic Laboratory, Department of Animal Husbandry and Dairying, Karnal, Haryana, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M A Mir
- Mountain Research Centre for Sheep and Goat, SKUAST, Shuhama (Aulestang), Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India
| |
Collapse
|
4
|
Zhao L, Li M, Xiao M, Chen M, Yang H, Zhao Y. A role for miRNAs in the regulation of brown adipose tissue whitening in goats (Capra Hircus). J Anim Sci 2024; 102:skae124. [PMID: 38712478 PMCID: PMC11263929 DOI: 10.1093/jas/skae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
A study of the mechanism of and metabolic regulation of brown adipose tissue (BAT) production is important for improving the survival rate of young animals. In the present study, we observed that perirenal adipose tissue in goats undergoes a rapid BAT whitening after birth. However, the underlying regulatory mechanism remains unknown. To address this further, we investigated the role of miRNAs in regulating the whitening process of BAT in goats. First, we identified the dynamic expression profiles of miRNAs during the whitening of BAT in Dazu black goat using RNA-seq. We identified a total of 1374 miRNAs, including 408 existing miRNAs, 693 known miRNAs, and 273 novel miRNAs. By analysis of the differentially expressed miRNAs (DE miRNAs), we found that 102 highly expressed miRNAs, including chi-miR-144-3p, chi-miR-144-5p, chi-miR-378-5p, chi-miR-136-3p, chi-miR-381, chi-miR-323b, chi-miR-1197-3p, chi-miR-411b-3p, and chi-miR-487a-3p, were enriched in BAT. In addition, 60 highly expressed miRNAs, including chi-miR-184, chi-miR-193a, chi-miR-193b-3p, chi-let-7c-5p, and chi-let-7e-5p, were enriched in white fat-like tissue. An analysis of miRNAs that were linearly downregulated (profile 0) or linearly upregulated (profile 19) over the D0-D28 period found that these DE miRNAs were mainly enriched in the Hippo signaling pathway, Cytokine-cytokine receptor interactions, and the TGF-beta signaling pathway. Furthermore, we confirmed that chi-let-7e-5p promotes the proliferation and differentiation of brown adipocytes. These results should facilitate a better understanding of the molecular regulation of miRNAs involved in BAT whitening in goats.
Collapse
Affiliation(s)
- Le Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Minhao Li
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Min Xiao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Haili Yang
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| |
Collapse
|
5
|
Zhou Y, Li X, Zhang X, Li M, Luo N, Zhao Y. Screening of Candidate Housekeeping Genes in Uterus Caruncle by RNA-Sequence and qPCR Analyses in Different Stages of Goat ( Capra hircus). Animals (Basel) 2023; 13:1897. [PMID: 37370406 DOI: 10.3390/ani13121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The uterus is a critical pregnancy organ for mammals. The normal growth and development of ruminant uterus caruncles are crucial to maintain gestation and fetal health in goats. Quantitative real-time polymerase chain reaction (qRT-PCR) is a reliable tool to study gene expression profiling for exploring the intrinsic mechanism underlying the conversion process of uterus caruncle tissue. However, the candidate housekeeping genes (HKGs) are required for normalizing the expression of function genes. In our study, 22 HKGs were selected from analyzing transcriptome data at non-pregnancy and pregnancy processes and previous reports about HKGs in goat tissues. We assessed them for expression suitability in 24 samples from uterus tissues at 15 non-pregnant days (Stage 1), early (Stage 2), and medium-later pregnant days (Stage 3). The expression stability of these genes was evaluated by using geNorm, Normfinder, Bestkeeper, and Delta Ct algorithms and, comprehensively, by ReFinder. In addition, the most and least stable HKGs were used to normalize the target genes expression of SPP1, VEGFA, and PAG8. It was found that traditional reference genes, such as ACTB and GAPDH, were not suitable for target gene normalization. In contrast, PPIB selected from RNA sequencing data and EIF3K selected from previous references showed the least variation and were recommended as the best HKGs during the nonpregnant stage and the whole stages of goat uterus caruncle tissue, respectively. It is the first time the HKGs genes in uterus during the non-pregnant day and throughout the total pregnancy have been explored. These findings found suitable HKGs in uterus caruncle tissues at various stages of non-pregnancy and pregnancy; these can be useful for gene expression studies to reveal the molecular mechanisms of uterus development in goats.
Collapse
Affiliation(s)
- Yumei Zhou
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Xingchun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Xinyue Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Minghui Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| | - Nanjian Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing Key Laboratory of Forage and Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing Herbivore Engineering Research Center, Chongqing 400715, China
| |
Collapse
|