1
|
Mora VP, Quero FB, Troncoso-Bravo T, Orellana C, Pereira P, Mackern-Oberti JP, Funes SC, Soto JA, Bohmwald K, Bueno SM, Kalergis AM. Partial long-term clinical improvement after a BCG challenge in systemic lupus erythematosus-prone mice. Autoimmunity 2024; 57:2380465. [PMID: 39034498 DOI: 10.1080/08916934.2024.2380465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Guérin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-α. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.
Collapse
Affiliation(s)
- Valentina P Mora
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisco B Quero
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tays Troncoso-Bravo
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Orellana
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Pereira
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Samanta C Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy. Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Ghavami A, Abtahi Froushani SM, Tehrani A. Oral Administration of Piperine Ameliorates Experimental Autoimmune Uveitis. Inflammation 2024:10.1007/s10753-024-02131-1. [PMID: 39196471 DOI: 10.1007/s10753-024-02131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
This study aimed to evaluate the impact of piperine on experimental autoimmune uveitis (EAU). EAU was induced by immunization with interphotoreceptor retinoid-binding protein emulsified in complete Freund adjuvant. Starting from day 8 post-induction, Lewis rats were given piperine (0, 20, 40, and 80 mg/kg-P.O.) or prednisolone (10 mg/kg-P.O.) for 18 consecutive days. The 80 mg/kg dose of piperine demonstrated superior regression of clinical symptoms, increased nitric oxide levels, and enhanced IDO activity in eye homogenates compared to other doses. The 40 and 80 mg/kg doses of piperine were more effective in promoting weight gain in EAU rats than the 20 mg/kg dose. EAU rats treated with 80 mg/kg piperine showed more favorable mRNA expression of IL-10 and TGF-β in their eyes than other treatment groups. The interventions led to a significant decrease in mRNA ratios of T-bet/GATA-3, RORγt/T-bet, RORγt/Foxp3, and RORγt/GATA-3 in the eyes of EAU rats compared to untreated EAU rats. Specifically, EAU rats treated with 80 mg/kg piperine exhibited a greater reduction in the mRNA ratio of RORγt/Foxp3 expression compared to other treatment groups. Overall, oral administration of piperine may offer potential for clinical application in uveitis.
Collapse
Affiliation(s)
- Alireza Ghavami
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Aliasghar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Li S, Moayedpour S, Li R, Bailey M, Riahi S, Kogler-Anele L, Miladi M, Miner J, Pertuy F, Zheng D, Wang J, Balsubramani A, Tran K, Zacharia M, Wu M, Gu X, Clinton R, Asquith C, Skaleski J, Boeglin L, Chivukula S, Dias A, Strugnell T, Montoya FU, Agarwal V, Bar-Joseph Z, Jager S. CodonBERT large language model for mRNA vaccines. Genome Res 2024; 34:1027-1035. [PMID: 38951026 PMCID: PMC11368176 DOI: 10.1101/gr.278870.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
mRNA-based vaccines and therapeutics are gaining popularity and usage across a wide range of conditions. One of the critical issues when designing such mRNAs is sequence optimization. Even small proteins or peptides can be encoded by an enormously large number of mRNAs. The actual mRNA sequence can have a large impact on several properties, including expression, stability, immunogenicity, and more. To enable the selection of an optimal sequence, we developed CodonBERT, a large language model (LLM) for mRNAs. Unlike prior models, CodonBERT uses codons as inputs, which enables it to learn better representations. CodonBERT was trained using more than 10 million mRNA sequences from a diverse set of organisms. The resulting model captures important biological concepts. CodonBERT can also be extended to perform prediction tasks for various mRNA properties. CodonBERT outperforms previous mRNA prediction methods, including on a new flu vaccine data set.
Collapse
Affiliation(s)
- Sizhen Li
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | | | - Ruijiang Li
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Michael Bailey
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Saleh Riahi
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | | | - Milad Miladi
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Jacob Miner
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Fabien Pertuy
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Jun Wang
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | | | - Khang Tran
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Minnie Zacharia
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Monica Wu
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Xiaobo Gu
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Ryan Clinton
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Carla Asquith
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Joseph Skaleski
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Lianne Boeglin
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Sudha Chivukula
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Anusha Dias
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Tod Strugnell
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | | | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Ziv Bar-Joseph
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA;
| | - Sven Jager
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| |
Collapse
|
4
|
Dong H, Zhang X, Duan Y, He Y, Zhao J, Wang Z, Wang J, Li Q, Fan G, Liu Z, Shen C, Zhang Y, Yu M, Fei J, Huang F. Hypoxia inducible factor-1α regulates microglial innate immune memory and the pathology of Parkinson's disease. J Neuroinflammation 2024; 21:80. [PMID: 38555419 PMCID: PMC10981320 DOI: 10.1186/s12974-024-03070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Neuroinflammation is one of the core pathological features of Parkinson's disease (PD). Innate immune cells play a crucial role in the progression of PD. Microglia, the major innate immune cells in the brain, exhibit innate immune memory effects and are recognized as key regulators of neuroinflammatory responses. Persistent modifications of microglia provoked by the first stimuli are pivotal for innate immune memory, resulting in an enhanced or suppressed immune response to second stimuli, which is known as innate immune training and innate immune tolerance, respectively. In this study, LPS was used to establish in vitro and in vivo models of innate immune memory. Microglia-specific Hif-1α knockout mice were further employed to elucidate the regulatory role of HIF-1α in innate immune memory and MPTP-induced PD pathology. Our results showed that different paradigms of LPS could induce innate immune training or tolerance in the nigrostriatal pathway of mice. We found that innate immune tolerance lasting for one month protected the dopaminergic system in PD mice, whereas the effect of innate immune training was limited. Deficiency of HIF-1α in microglia impeded the formation of innate immune memory and exerted protective effects in MPTP-intoxicated mice by suppressing neuroinflammation. Therefore, HIF-1α is essential for microglial innate immune memory and can promote neuroinflammation associated with PD.
Collapse
Affiliation(s)
- Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zishan Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Qing Li
- School of Life Science and Technology, Tongji University, 1239 Shipping Road, Shanghai, 200092, China
| | - Guangchun Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Chenye Shen
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Shipping Road, Shanghai, 200092, China.
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai, 201203, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Papareddy P, Selle M, Partouche N, Legros V, Rieu B, Olinder J, Ryden C, Bartakova E, Holub M, Jung K, Pottecher J, Herwald H. Identifying biomarkers deciphering sepsis from trauma-induced sterile inflammation and trauma-induced sepsis. Front Immunol 2024; 14:1310271. [PMID: 38283341 PMCID: PMC10820703 DOI: 10.3389/fimmu.2023.1310271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Objective The purpose of this study was to identify a panel of biomarkers for distinguishing early stage sepsis patients from non-infected trauma patients. Background Accurate differentiation between trauma-induced sterile inflammation and real infective sepsis poses a complex life-threatening medical challenge because of their common symptoms albeit diverging clinical implications, namely different therapies. The timely and accurate identification of sepsis in trauma patients is therefore vital to ensure prompt and tailored medical interventions (provision of adequate antimicrobial agents and if possible eradication of infective foci) that can ultimately lead to improved therapeutic management and patient outcome. The adequate withholding of antimicrobials in trauma patients without sepsis is also important in aspects of both patient and environmental perspective. Methods In this proof-of-concept study, we employed advanced technologies, including Matrix-Assisted Laser Desorption/Ionization (MALDI) and multiplex antibody arrays (MAA) to identify a panel of biomarkers distinguishing actual sepsis from trauma-induced sterile inflammation. Results By comparing patient groups (controls, infected and non-infected trauma and septic shock patients under mechanical ventilation) at different time points, we uncovered distinct protein patterns associated with early trauma-induced sterile inflammation on the one hand and sepsis on the other hand. SYT13 and IL1F10 emerged as potential early sepsis biomarkers, while reduced levels of A2M were indicative of both trauma-induced inflammation and sepsis conditions. Additionally, higher levels of TREM1 were associated at a later stage in trauma patients. Furthermore, enrichment analyses revealed differences in the inflammatory response between trauma-induced inflammation and sepsis, with proteins related to complement and coagulation cascades being elevated whereas proteins relevant to focal adhesion were diminished in sepsis. Conclusions Our findings, therefore, suggest that a combination of biomarkers is needed for the development of novel diagnostic approaches deciphering trauma-induced sterile inflammation from actual infective sepsis.
Collapse
Affiliation(s)
- Praveen Papareddy
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Michael Selle
- Genomics and Bioinformatics of Infectious Diseases, Institute for Animal Genomics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicolas Partouche
- Hôpitaux Universitaires de Strasbourg, Service d’Anesthésie-Réanimation & Médecine Péri-opératoire - Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Legros
- Département d’Anesthésie-Réanimation et Médecine Peri-Operatoire, Centre Hospitalier et Universitaire (CHU) de Reims, Université de Reims Champagne-Ardenne, Reims, France
| | - Benjamin Rieu
- Réanimation Médico-Chirurgicale, Trauma Center, Pôle Médecine Péri-Opératoire, Centre Hospitalier et Universitaire (CHU) de Clermont-Ferrand, Clermont Ferrand, France
| | - Jon Olinder
- Division of Infection Medicine, Helsingborg Hospital and Department of Clinical Sciences Helsingborg, Lund University, Helsingborg, Sweden
| | - Cecilia Ryden
- Division of Infection Medicine, Helsingborg Hospital and Department of Clinical Sciences Helsingborg, Lund University, Helsingborg, Sweden
| | - Eva Bartakova
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czechia
| | - Klaus Jung
- Genomics and Bioinformatics of Infectious Diseases, Institute for Animal Genomics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julien Pottecher
- Hôpitaux Universitaires de Strasbourg, Service d’Anesthésie-Réanimation & Médecine Péri-opératoire - Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Arjmand B, Hamidpour SK, Tayanloo-Beik A, Arjmand R, Rezaei-Tavirani M, Namazi N, Ojagh H, Larijani B. Incorporating NK Cells in a Three-Dimensional Organotypic Culture System for Human Skin Stem Cells: Modeling Skin Diseases and Immune Cell Interplay. Methods Mol Biol 2024; 2849:161-171. [PMID: 37801255 DOI: 10.1007/7651_2023_504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Natural killer (NK) cells are a part of a sophisticated immune system that is necessary for the skin because it is a crucial organ that is continually exposed to environmental influences. Recent studies have shown that NK cell incorporation into three-dimensional (3D) organotypic culture systems for human skin stem cells provides a physiologically relevant environment to study the interactions between immune cells and skin cells, making it a powerful tool for simulating skin diseases and researching these interactions. It has been shown that adding NK cells to 3D organotypic culture systems can improve keratinocyte differentiation and control inflammation in a variety of skin conditions, including psoriasis. In order to increase our knowledge of skin diseases and immune cell interactions, this work intends to propose an optimum approach for adding NK cells to a 3D organotypic culturing system for human skin stem cells. By better comprehending these relationships, researchers hope to develop novel treatments for skin diseases that are more effective and cause fewer side effects than current treatments. To completely understand the mechanisms underlying these interactions and to create new treatments for skin diseases, more research is required. In conclusion, NK cell integration into 3D organotypic culture systems offers a potent tool to investigate immune cell interactions with skin cells in a physiologically appropriate setting, which may result in major improvements in the treatment of skin diseases.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Ojagh
- Students Research Committee of Nursing, Faculty of Nursing, Aja University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrine & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Jiang M, Chattopadhyay AN, Jeon T, Zhang X, Rotello VM. Sensor Array-Enabled Identification of Drugs for Repolarization of Macrophages to Anti-Inflammatory Phenotypes. Anal Chem 2023; 95:12177-12183. [PMID: 37535805 PMCID: PMC10612494 DOI: 10.1021/acs.analchem.3c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Macrophages are key components of the innate immune system that have essential functions in physiological processes and diseases. The phenotypic plasticity of macrophages allows cells to be polarized into a multidimensional spectrum of phenotypes, broadly classed as pro-inflammatory (M1) and anti-inflammatory (M2) states. Repolarization of M1 to M2 phenotypes alters the immune response to ameliorate autoimmune and inflammation-associated diseases. Detection of this repolarization, however, is challenging to execute in high-throughput applications. In this work, we demonstrate the ability of a single polymer fabricated to provide a six-channel sensor array that can determine macrophage polarization phenotypes. This sensing platform provides a sensitive and high-throughput tool for detecting drug-induced M1-to-M2 repolarization, allowing the identification of new therapeutic leads for inflammatory diseases. The ability of this sensor array to discriminate different M2 subtypes induced by drugs can also improve the efficacy evaluation of anti-inflammatory drugs and avoid adverse effects.
Collapse
Affiliation(s)
- Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| |
Collapse
|