1
|
Clavell-Sansalvador A, Río-López R, González-Rodríguez O, García-Gil LJ, Xifró X, Zigovski G, Ochoteco-Asensio J, Ballester M, Dalmau A, Ramayo-Caldas Y. Effect of Group Mixing and Available Space on Performance, Feeding Behavior, and Fecal Microbiota Composition during the Growth Period of Pigs. Animals (Basel) 2024; 14:2704. [PMID: 39335293 PMCID: PMC11428945 DOI: 10.3390/ani14182704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Stress significantly affects the health, welfare, and productivity of farm animals. We performed a longitudinal study to evaluate stress's effects on pig performance, feeding behavior, and fecal microbiota composition. This study involved 64 Duroc pigs during the fattening period, divided into two experimental groups: a stress group (n = 32) and a control group (n = 32). Stressed groups had less space and were mixed twice during the experiment. We monitored body weight, feed efficiency, feeding behavior, and fecal microbiota composition. Compared to the control group, the stressed pigs exhibited reduced body weight, feed efficiency, fewer feeder visits, and longer meal durations. In the fecal microbiota, resilience was observed, with greater differences between groups when sampling was closer to the stressful stimulus. Stressed pigs showed an increase in opportunistic bacteria, such as Streptococcus, Treponema and members of the Erysipelotrichaceae family, while control pigs had more butyrate- and propionate-producing genera like Anaerobutyricum, Coprococcus and HUN007. Our findings confirm that prolonged stress negatively impacts porcine welfare, behavior, and performance, and alters their gut microbiota. Specific microorganisms identified could serve as non-invasive biomarkers for stress, potentially informing both animal welfare and similar gut-brain axis mechanisms relevant to human research.
Collapse
Affiliation(s)
- Adrià Clavell-Sansalvador
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Raquel Río-López
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| | - L. Jesús García-Gil
- Digestive Diseases and Microbiota Group, Biomedical Research Institute of Girona (IDIBGI), 17190 Girona, Girona, Spain;
- New Therapeutic Targets Lab Research Group, Medical Sciences Departament, Faculty of Medicine, Universitat de Girona, 17071 Girona, Girona, Spain;
| | - Xavier Xifró
- New Therapeutic Targets Lab Research Group, Medical Sciences Departament, Faculty of Medicine, Universitat de Girona, 17071 Girona, Girona, Spain;
| | - Gustavo Zigovski
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil;
| | - Juan Ochoteco-Asensio
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| | - Antoni Dalmau
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| |
Collapse
|
2
|
Farhangi S, Gòdia M, Derks MFL, Harlizius B, Dibbits B, González-Prendes R, Crooijmans RPMA, Madsen O, Groenen MAM. Expression genome-wide association study identifies key regulatory variants enriched with metabolic and immune functions in four porcine tissues. BMC Genomics 2024; 25:684. [PMID: 38992576 PMCID: PMC11238464 DOI: 10.1186/s12864-024-10583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Integration of high throughput DNA genotyping and RNA-sequencing data enables the discovery of genomic regions that regulate gene expression, known as expression quantitative trait loci (eQTL). In pigs, efforts to date have been mainly focused on purebred lines for traits with commercial relevance as such growth and meat quality. However, little is known on genetic variants and mechanisms associated with the robustness of an animal, thus its overall health status. Here, the liver, lung, spleen, and muscle transcriptomes of 100 three-way crossbred female finishers were studied, with the aim of identifying novel eQTL regulatory regions and transcription factors (TFs) associated with regulation of porcine metabolism and health-related traits. RESULTS An expression genome-wide association study with 535,896 genotypes and the expression of 12,680 genes in liver, 13,310 genes in lung, 12,650 genes in spleen, and 12,595 genes in muscle resulted in 4,293, 10,630, 4,533, and 6,871 eQTL regions for each of these tissues, respectively. Although only a small fraction of the eQTLs were annotated as cis-eQTLs, these presented a higher number of polymorphisms per region and significantly stronger associations with their target gene compared to trans-eQTLs. Between 20 and 115 eQTL hotspots were identified across the four tissues. Interestingly, these were all enriched for immune-related biological processes. In spleen, two TFs were identified: ERF and ZNF45, with key roles in regulation of gene expression. CONCLUSIONS This study provides a comprehensive analysis with more than 26,000 eQTL regions identified that are now publicly available. The genomic regions and their variants were mostly associated with tissue-specific regulatory roles. However, some shared regions provide new insights into the complex regulation of genes and their interactions that are involved with important traits related to metabolism and immunity.
Collapse
Affiliation(s)
- Samin Farhangi
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Topigs Norsvin Research Center, 's-Hertogenbosch, The Netherlands
| | | | - Bert Dibbits
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Rayner González-Prendes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Ausnutria BV, Zwolle, The Netherlands
| | | | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Bridgeland-Stephens L, Thorpe SKS, Chappell J. Potential resilience treatments for orangutans ( Pongo spp.): Lessons from a scoping review of interventions in humans and other animals. Anim Welf 2023; 32:e77. [PMID: 38487448 PMCID: PMC10937215 DOI: 10.1017/awf.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024]
Abstract
Wild orangutans (Pongo spp.) rescued from human-wildlife conflict must be adequately rehabilitated before being returned to the wild. It is essential that released orangutans are able to cope with stressful challenges such as food scarcity, navigating unfamiliar environments, and regaining independence from human support. Although practical skills are taught to orangutans in rehabilitation centres, post-release survival rates are low. Psychological resilience, or the ability to 'bounce back' from stress, may be a key missing piece of the puzzle. However, there is very little knowledge about species-appropriate interventions which could help captive orangutans increase resilience to stress. This scoping review summarises and critically analyses existing human and non-human animal resilience literature and provides suggestions for the development of interventions for orangutans in rehabilitation. Three scientific databases were searched in 2021 and 2023, resulting in 63 human studies and 266 non-human animal studies. The first section brings together human resilience interventions, identifying common themes and assessing the applicability of human interventions to orangutans in rehabilitation. The second section groups animal interventions into categories of direct stress, separation stress, environmental conditions, social stress, and exercise. In each category, interventions are critically analysed to evaluate their potential for orangutans in rehabilitation. The results show that mild and manageable forms of intervention have the greatest potential benefit with the least amount of risk. The study concludes by emphasising the need for further investigation and experimentation, to develop appropriate interventions and measure their effect on the post-release survival rate of orangutans.
Collapse
Affiliation(s)
| | | | - Jackie Chappell
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Minussi I, Gerrits WJJ, Jansman AJM, Gerritsen R, Lambert W, Zonderland JJ, Bolhuis JE. Amino acid supplementation counteracts negative effects of low protein diets on tail biting in pigs more than extra environmental enrichment. Sci Rep 2023; 13:19268. [PMID: 37935708 PMCID: PMC10630283 DOI: 10.1038/s41598-023-45704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Low protein (LP) diets may increase the occurrence of damaging behaviours, like tail biting, in pigs. We investigated the effect of supplementing a LP diet with indispensable amino acids (IAA) or environmental enrichment on tail biting. Undocked pigs (n = 48 groups of 12) received either a normal protein diet (NP), a LP, LP with supplemented IAA (LP+), or LP diet with extra environmental enrichment (LP-E+) during the starter, grower, and finisher phase. Performance, activity, behaviour, and body damage were recorded. LP and LP-E+ had a lower feed intake, growth, and gain-to-feed ratio, and were more active than NP and LP+ pigs. LP-E+ pigs interacted most often with enrichment materials, followed by LP, LP+, and NP pigs. LP pigs showed more tail biting than all other groups during the starter phase and the finisher phase (tendency) compared to NP and LP+ pigs. Thus, LP-E+ only reduced tail biting in the starter phase, whereas LP+ tended to do so throughout. Tail damage was more severe in LP pigs than in NP and LP+, with LP-E+ in between. In conclusion, IAA supplementation was more effective than extra environmental enrichment in countering the negative effects of a low protein diet on tail biting in pigs.
Collapse
Affiliation(s)
- Ilaria Minussi
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
- Wageningen UR, Livestock Research, 6708 WD, Wageningen, The Netherlands.
| | - Walter J J Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | | | | | | | | | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
5
|
van der Zande LE, Guzhva O, Parois S, van de Leemput IA, Bolhuis JE, Rodenburg TB. Estimation of Resilience Parameters Following LPS Injection Based on Activity Measured With Computer Vision. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.883940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resilience could be referred to as the animal’s ability to successfully adapt to a challenge. This is typically displayed by a quick return to initial metabolic or activity levels and behaviors. Pigs have distinct diurnal activity patterns. Deviations from these patterns could potentially be utilized to quantify resilience. However, human observations of activity are labor intensive and not feasible in practice on a large scale. In this study, we show the use of a computer vision tracking algorithm to quantify resilience based on activity individual patterns following a lipopolysaccharide (LPS) challenge, which induced a sickness response. We followed 121 individual pigs housed in barren or enriched housing systems, as previous work suggests an impact of housing on resilience, for eight days. The enriched housing consisted of delayed weaning in a group farrowing system and extra space compared with the barren pens and environmental enrichment. Enriched housed pigs were more active pre-injection of LPS, especially during peak activity times, than barren housed pigs (49.4 ± 9.9 vs. 39.1 ± 5.0 meter/hour). Four pigs per pen received an LPS injection and two pigs a saline injection. LPS injected animals were more likely to show a dip in activity than controls (86% vs 17%). Duration and Area Under the Curve (AUC) of the dip were not affected by housing. However, pigs with the same AUC could have a long and shallow dip or a steep and short dip. Therefore the AUC:duration ratio was calculated, and enriched housed pigs had a higher AUC:duration ratio compared to barren housed pigs (9244.1 ± 5429.8 vs 5919.6 ± 4566.1). Enriched housed pigs might therefore have a different strategy to cope with an LPS sickness challenge. However, more research on this strategy and the use of activity to quantify resilience and its relationship to physiological parameters is therefore needed.
Collapse
|