1
|
Murphy WJ, Harris AJ. Toward telomere-to-telomere cat genomes for precision medicine and conservation biology. Genome Res 2024; 34:655-664. [PMID: 38849156 PMCID: PMC11216403 DOI: 10.1101/gr.278546.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Genomic data from species of the cat family Felidae promise to stimulate veterinary and human medical advances, and clarify the coherence of genome organization. We describe how interspecies hybrids have been instrumental in the genetic analysis of cats, from the first genetic maps to propelling cat genomes toward the T2T standard set by the human genome project. Genotype-to-phenotype mapping in cat models has revealed dozens of health-related genetic variants, the molecular basis for mammalian pigmentation and patterning, and species-specific adaptations. Improved genomic surveillance of natural and captive populations across the cat family tree will increase our understanding of the genetic architecture of traits, population dynamics, and guide a future of genome-enabled biodiversity conservation.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA;
- Department of Biology, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Andrew J Harris
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
2
|
Stachowiak M, Szczerbal I, Nowacka-Woszuk J, Nowak T, Sowinska N, Lukomska A, Gogulski M, Badura M, Sklorz-Mencel K, Jagodka D, Nizanski W, Dzimira S, Switonski M. Cytogenetic and molecular insight into the genetic background of disorders of sex development in seventeen cats. Sci Rep 2022; 12:17807. [PMID: 36280698 PMCID: PMC9592617 DOI: 10.1038/s41598-022-21718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 01/19/2023] Open
Abstract
The genetic background of feline disorders of sex development (DSDs) is poorly understood. We performed comprehensive cytogenetic, molecular, and histological studies of 17 cats with abnormal external genitalia, unusual behavior, or tricolor coats (atypical in males). The DSD phenotype of three cats was associated with sex chromosome abnormalities: X/Y translocation (38,XXSRY+), 37,X/38,XY mosaicism, and XX/XY leukocyte chimerism. The remaining 14 affected cats were classified as XY DSD (SRY-positive). In this group and 38 normal males, we analyzed a priori selected candidate genes (SRY, TAC3, CYP11B1 and LHCGR). Only a previously reported nonpathogenic variant was found in SRY. Moreover, SRY gene copy number was determined, and three variants were observed: 6, 5 (modal), and 4 copies in a single DSD case. The known variants in TAC3 and CYP11B1, responsible for testicular hypoplasia, persistent primary dentition or congenital adrenal hyperplasia, were not found in the study group. Nine novel polymorphisms were identified in the LHCGR gene, one of which, a potentially regulatory indel variant in 5'UTR, was significantly associated (p = 0.0467) with XY DSD. Our report confirmed that abnormalities of sex chromosomes are important causes of feline DSDs. We also showed that the indel variant of LHCGR can be considered a promising marker associated with XY DSD phenotype.
Collapse
Affiliation(s)
- Monika Stachowiak
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Izabela Szczerbal
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Joanna Nowacka-Woszuk
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tomasz Nowak
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Natalia Sowinska
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Anna Lukomska
- grid.410688.30000 0001 2157 4669Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Poznan, Poland
| | - Maciej Gogulski
- grid.410688.30000 0001 2157 4669Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Poznan, Poland ,grid.424906.d0000 0000 9858 6214Centre of Biosciences, Institute of Animal Physiology, Kosice, Slovakia ,grid.410688.30000 0001 2157 4669University Centre for Veterinary Medicine, Poznan University of Life Sciences, Poznan, Poland
| | - Malgorzata Badura
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | | | | | - Wojciech Nizanski
- grid.411200.60000 0001 0694 6014Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Stanislaw Dzimira
- grid.411200.60000 0001 0694 6014Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Marek Switonski
- grid.410688.30000 0001 2157 4669Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| |
Collapse
|