1
|
Mei S, He G, Zhang T, Chen Z, Zhang R, Liao Y, Zhu M, Xu D, Shen Y, Zhou B, Wang K, Wang C, Chen C, Zhu E, Cheng Z. Effect of feeding fermented distiller's grains diets on immune status and metabolomics of spleen and mesenteric lymph nodes in finishing cattle. J Proteomics 2024; 296:105107. [PMID: 38325729 DOI: 10.1016/j.jprot.2024.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
To explore the effect of feeding fermented distiller's grains (FDG) diets on spleen and mesenteric lymph nodes (MLN) immune status and metabolomics in finishing cattle, eighteen Guanling crossbred cattle (18 months old, 250.0 ± 25 kg) were randomly divided into 3 groups: a basal diet (Control) group, an FDG-15% group, and an FDG-30% group (containing 0%, 15% and 30% FDG to partially replace the concentrates, respectively). After 75 days, the spleens and MLN were collected for detection of relative spleen weight, immune parameters, and metabolomic analysis. Compared with the Control group, FDG-30% group significantly increased (P<0.05) the relative spleen weight. In addition, the level of IL-17A in the spleen of the FDG-30% group was significantly higher than that of the FDG-15% group. Metabolomic analysis showed that differential metabolites (VIP>1, P<0.05) of spleen and MLN in FDG-15% and FDG-30% groups are mostly lipids and lipid molecules. KEGG analysis illustrated that choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance were metabolic pathways in spleen shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group, and choline metabolism in cancer was a metabolic pathway in MLN shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group. These results suggest that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance. Additionally, it may affect MLN development by regulating choline metabolism in cancer. SIGNIFICANCE: Fermented distiller's grains (FDG) is a high quality alternative to feed because it is rich in beneficial microorganisms and nutrients. The spleen and mesenteric lymph nodes (MLN) are important peripheral immune organs in animals, whose status reflects the health of the animal. However, there are few reports on the effect of feeding FDG diets on spleen and MLN immune status and metabolomics in domestic animals. In this study, we found that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance metabolic pathways, and may affect MLN development by regulating choline metabolism in cancer. This study extends our understanding of the metabolomics of the spleen and MLN in FDG and helps to further understand of the immunomodulatory effects of the FDG diet.
Collapse
Affiliation(s)
- Shihui Mei
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Guangxia He
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Yixiao Liao
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yanjuan Shen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Chunmei Wang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China.
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Mei S, He G, Chen Z, Zhang R, Liao Y, Zhu M, Xu D, Shen Y, Zhou B, Wang K, Wang C, Zhu E, Chen C. Probiotic-Fermented Distillers Grain Alters the Rumen Microbiome, Metabolome, and Enzyme Activity, Enhancing the Immune Status of Finishing Cattle. Animals (Basel) 2023; 13:3774. [PMID: 38136811 PMCID: PMC10740804 DOI: 10.3390/ani13243774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
A total of 30 Simmental crossbred cattle (6.50 months old, 265.0 ± 22.48 kg) were randomly divided into three groups, with 10 heads per group, and fed for 45 days. The diet treatments consisted of the Control group without PFDG supplementation, the PFDG-15% group with 15% PFDG substituting for 15% concentrate, and PFDG-30% group with 30% PFDG substituting for 30% concentrate. The results showed that compared with the Control group, the average daily gain (ADG) of the cattle in the PFDG-30% group decreased significantly (0.890 vs. 0.768 kg/d, p = 0.005). The serum malondialdehyde content of cattle in the PFDG-15% and PFDG-30% groups decreased significantly (p = 0.047) compared to that of the Control group. However, the serum superoxide dismutase activity of cattle in the PFDG-30% group was significantly higher than that of the Control group (p = 0.047). Meanwhile, both the PFDG-15% and PFDG-30% groups (1758.47 vs. 2061.30 μg/mL) showed higher serum levels of immunoglobulin G, while the interleukin-10 concentration was lower in the PFDG-30% group (p = 0.027). In addition, the PFDG-15% and PFDG-30% groups shifted the rumen microbiota by improving the abundances of F082 (related to propionic acid production) and fiber-degrading bacteria (Lachnospiraceae_UGG-009 and Prevotellaceae_UCG-001) and reducing the abundance of the disease-associated bacteria Selenomonas. A Kyoto encyclopedia of genes and genomes (KEGG) analysis illustrated that three key metabolic pathways, including phenylalanine metabolism, pyrimidine metabolism, and tryptophan metabolism, were enriched in the PFDG-15% group, but eight key metabolic pathways, including arachidonic acid metabolism, were enriched in the PFDG-30% group. Importantly, both the PFDG-15% and PFDG-30% groups increased (p < 0.01) the activities of cellulase, lipase, and protease in the rumen. Finally, the different bacterial abundance in the rumen was associated with changes in the ADG, serum antioxidant capacity, immune status, rumen enzyme activity, and metabolites. These results suggest that PFDG alters rumen microbiome abundance, metabolome, and enzyme activity for enhancing serum antioxidant capacity and the immune status, but when the supplemental level reaches 30%, it has a negative effect on ADG and the anti-inflammatory factors in finishing cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (S.M.); (G.H.); (Z.C.); (R.Z.); (Y.L.); (M.Z.); (D.X.); (Y.S.); (B.Z.); (K.W.); (C.W.); (E.Z.)
| |
Collapse
|
3
|
He G, Chen C, Mei S, Chen Z, Zhang R, Zhang T, Xu D, Zhu M, Luo X, Zeng C, Zhou B, Wang K, Zhu E, Cheng Z. Partially Alternative Feeding with Fermented Distillers' Grains Modulates Gastrointestinal Flora and Metabolic Profile in Guanling Cattle. Animals (Basel) 2023; 13:3437. [PMID: 38003055 PMCID: PMC10668747 DOI: 10.3390/ani13223437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Fermented distillers' grains (FDG) are commonly used to enhance the health and metabolic processes of livestock and poultry by regulating the composition and activity of the intestinal microbiota. Nevertheless, there is a scarcity of research on the effects of the FDG diet on the gastrointestinal microbiota and its metabolites in cattle. This study examines the impact of FDG dietary supplements on the gastrointestinal flora and metabolic profile of Guanling cattle. Eighteen cattle were randomly assigned to three treatment groups with six replicates per group. The treatments included a basal diet (BD), a 15% concentrate replaced by FDG (15% FDG) in the basal diet, and a 30% concentrate replaced by FDG (30% FDG) in the basal diet. Each group was fed for a duration of 60 days. At the conclusion of the experimental period, three cattle were randomly chosen from each group for slaughter and the microbial community structure and metabolic mapping of their abomasal and cecal contents were analyzed, utilizing 16S rDNA sequencing and LC-MS technology, respectively. At the phylum level, there was a significant increase in Bacteroidetes in both the abomasum and cecum for the 30%FDG group (p < 0.05). Additionally, there was a significant reduction in potential pathogenic bacteria such as Spirochetes and Proteobacteria for both the 15%FDG and 30%FDG groups (p < 0.05). At the genus level, there was a significant increase (p < 0.05) in Ruminococcaceae_UCG-010, Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005 fiber degradation bacteria. Non-target metabolomics analysis indicated that the FDG diet significantly impacted primary bile acid biosynthesis, bile secretion, choline metabolism in cancer, and other metabolic pathways (p < 0.05). There is a noteworthy correlation between the diverse bacterial genera and metabolites found in the abomasal and cecal contents of Guanling cattle, as demonstrated by correlation analysis. In conclusion, our findings suggest that partially substituting FDG for conventional feed leads to beneficial effects on both the structure of the gastrointestinal microbial community and the metabolism of its contents in Guanling cattle. These findings offer a scientific point of reference for the further use of FDG as a cattle feed resource.
Collapse
Affiliation(s)
- Guangxia He
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
| | - Xiaofen Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Chengrong Zeng
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| |
Collapse
|
4
|
Luo X, Zhang T, Xu D, Zhu M, Zhang J, Zhang R, Hu Q, Wang Y, He G, Chen Z, Mei S, Zhou B, Wang K, Chen C, Zhu E, Cheng Z. The effect of feeding fermented distillers' grains diet on the intestinal metabolic profile of Guanling crossbred cattle. Front Vet Sci 2023; 10:1238064. [PMID: 37929280 PMCID: PMC10622970 DOI: 10.3389/fvets.2023.1238064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Fermented distiller's grains (FDG)-based diets are nutritious and can improve the growth and intestinal immunity in livestock. However, there is limited research examining the effect of feeding FDG-based diets on changes in intestinal metabolites and related pathways in livestock. In this study, nine Guanling crossbred cattle (Guizhou Guanling Yellow cattle × Simmental cattle) were selected and randomly divided into a basal diet (BD) group and two experimental groups fed with FDG replacing 15% and 30% of the daily ration concentrates (FDG-Case A and FDG-Case B), respectively, with three cattle in each group. Fresh jejunum (J) and cecum (C) tissues were collected for metabolomic analysis. Differential metabolites and metabolic pathways were explored by means of univariate and multivariate statistical analysis. Compared with the J-BD group, 30 and 100 differential metabolites (VIP > 1, p < 0.05) were obtained in the J-FDG-Case A group and J-FDG-Case B group, respectively, and the J-FDG-Case B vs. J-FDG-Case A comparison revealed 63 significantly differential metabolites, which were mainly divided into superclasses including lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and derivatives. Compared with the C-BD, 3 and 26 differential metabolites (VIP > 1, p < 0.05) were found in the C-FDG-Case A group and C-FDG-Case B group, respectively, and the C-FDG-Case B vs. C-FDG-Case A comparison revealed 21 significantly different metabolites, which were also mainly divided into superclasses including lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and derivatives. A total of 40 metabolic pathways were identified, with a significance threshold set at p < 0.05. Among them, 2, 14, and 18 metabolic pathways were significantly enriched in the J-FDG-Case A vs. J-BD, J-FDG-Case B vs. J-BD, and J-FDG-Case B vs. J-FDG-Case A comparisons, respectively. Meanwhile, 1, 2, and 3 metabolic pathways were obtained in the C-FDG-Case A vs. C-BD, C-FDG-Case B vs. C-BD, and C-FDG-Case B vs. C-FDG-Case A comparisons, respectively. Furthermore, four significant metabolic pathways, namely insulin resistance, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, and primary bile acid biosynthesis, were significantly enriched in Guanling crossbred cattle fed FDG diets. These results suggest that feeding FDG diets may promote the growth and intestinal immunity of Guanling crossbred cattle by regulating metabolic patterns of lipid compounds and related metabolic pathways. This study sheds light on the potential metabolic regulatory mechanisms of FDG diets and offers some references for their use in livestock feed.
Collapse
Affiliation(s)
- Xiaofen Luo
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Junjie Zhang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Qian Hu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Yongxuan Wang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Guangxia He
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|