1
|
Zhang L, van den Born E, Segers RPAM, Raes M, Di D, Liu BB, Li WL, Hao F, Wang J, Gan Y, Yuan T, Feng ZX, Liu F, Shao GQ. Intradermal vaccination with Porcilis® Begonia can clinically protect against fatal PRV challenge with the highly virulent ZJ01 field strain. Microb Pathog 2024; 187:106513. [PMID: 38147968 DOI: 10.1016/j.micpath.2023.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Since pseudorabies (PR) re-emerged and rapidly spread in China at the end of 2011, researchers have focused on effective vaccine strategies to prevent and control pseudorabies virus (PRV) infection in pig herds. Due to the extensive application of an attenuated vaccine based on the Bartha-K61 strain isolated in Hungary in 1961 and the variation of the PRV strain, it has been suggested that traditional vaccines based on the Bartha-K61 strain offer only partial protection against variant strains. It was therefore evaluated whether the Porcilis® Begonia vaccine, which is based on the NIA-3 strain with deletions in the gE and TK genes, is efficacious against experimental infection with the virulent, contemporary Chinese PRV strain ZJ01. In this study, piglets were vaccinated with Porcilis® Begonia through either the intradermal (ID) route or the intramuscular (IM) route and subsequently challenged intranasally with strain ZJ01 at 4 weeks post-vaccination. An unvaccinated challenge group and an unvaccinated/nonchallenged group were also included in the study. All animals were monitored for 14 days after challenge. Vaccinated and negative control pigs stayed healthy during the study, while the unvaccinated control animals developed lesions associated with PRV ZJ01 challenge, and 44% of these pigs died before the end of the experiment. This study demonstrated that ID or IM vaccination of pigs with a vaccine based on the NIA-3 strain Porcilis® Begonia clinically protects against fatal PRV challenge with the ZJ01 strain.
Collapse
Affiliation(s)
- Lei Zhang
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | | | | | - Maurice Raes
- MSD Animal Health, P.O. Box 31, 5830 AA, Boxmeer, the Netherlands
| | - Di Di
- MSD (Ningbo) Animal Health Technology Co., Ltd, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Bei-Bei Liu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Wen-Liang Li
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Jia Wang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Ting Yuan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Zhi-Xin Feng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Liu
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guo-Qing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
2
|
Huang X, Qin S, Wang X, Xu L, Zhao S, Ren T, Ouyang K, Chen Y, Wei Z, Qin Y, Huang W. Molecular epidemiological and genetic characterization of pseudorabies virus in Guangxi, China. Arch Virol 2023; 168:285. [PMID: 37938380 DOI: 10.1007/s00705-023-05907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023]
Abstract
Pseudorabies virus (PRV) is an important pathogen that can cause harm to the pig population. Since 2011, there have been a number of large-scale outbreaks of pseudorabies on Chinese farms where animals had been vaccinated with the Bartha-K61 vaccine. In order to understand the epidemiological trend and genetic variations of PRV in Guangxi province, China, 819 tissue samples were collected from swine farms where PRV infection was suspected from 2013 to 2019, and these were tested for infectious wild strains of PRV. The results showed a positive rate of PRV in Guangxi province of 28.21% (231/819). Thirty-six wild-type PRV strains were successfully isolated from PRV-positive tissue samples, and a genetic evolutionary analysis was performed based on the gB, gC, gD, gE, and TK genes. Thirty of the PRV strains were found to be closely related to the Chinese variant strains HeN1-China-2012 and HLJ8-China-2013. In addition, five PRV strains were genetically related to Chinese classical strains, and one isolate was a recombinant of the PRV variant and the vaccine strain Bartha-K61. Amino acid sequence analysis showed that all 36 PRV strains had characteristic variant sites in the amino acid sequences of the gB, gC, gD, and gE proteins. Pathogenicity analysis showed that, compared to classical PRV strains, the PRV variant strains were more pathogenic in mice and had a lower LD50. Taken together, our results show that wild-type PRV infections are common on pig farms in Guangxi province of China and that the dominant prevalent strains were those of the PRV variants. The PRV variant strains also had increased pathogenicity in mice. Our data will provide a useful reference for understanding the prevalence and genetic evolution of PRV in China.
Collapse
Affiliation(s)
- Xiangmei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Shuying Qin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xuying Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lishi Xu
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Shuo Zhao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| |
Collapse
|
3
|
Ren X, Cao N, Tian L, Liu W, Zhu H, Rong Z, Yao M, Li X, Qian P. A self-assembled nanoparticle vaccine based on pseudorabies virus glycoprotein D induces potent protective immunity against pseudorabies virus infection. Vet Microbiol 2023; 284:109799. [PMID: 37327558 DOI: 10.1016/j.vetmic.2023.109799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Pseudorabies virus (PRV) mainly causes pseudorabies (PR) or Aujeszky's disease in pigs and can infect humans, raising public health concerns about zoonotic and interspecies transmission of PR. With the emergence of PRV variants in 2011, the classic attenuated PRV vaccine strains have failed to protect many swine herds against PR. Herein, we developed a self-assembled nanoparticle vaccine that induces potent protective immunity against PRV infection. PRV glycoprotein D (gD) was expressed using the baculovirus expression system and further presented on the lumazine synthase (LS) 60-meric protein scaffolds via the SpyTag003/SpyCatcher003 covalent coupling system. In mouse and piglet models, LSgD nanoparticles emulsified with the ISA 201VG adjuvant elicited robust humoral and cellular immune responses. Furthermore, LSgD nanoparticles provided effective protection against PRV infection and eliminated pathological symptoms in the brain and lungs. Collectively, the gD-based nanoparticle vaccine design appears to be a promising candidate for potent protection against PRV infection.
Collapse
Affiliation(s)
- Xujiao Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Linxing Tian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manman Yao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|
4
|
Zhang HL, Zhang RH, Liu G, Li GM, Wang FX, Wen YJ, Shan H. Evaluation of immunogenicity of gene-deleted and subunit vaccines constructed against the emerging pseudorabies virus variants. Virol J 2023; 20:98. [PMID: 37221518 DOI: 10.1186/s12985-023-02051-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Pseudorabies (PR) (also called Aujeszky's disease, AD) is a serious infectious disease affecting pigs and other animals worldwide. The emergence of variant strains of pseudorabies virus (PRV) since 2011 has led to PR outbreaks in China and a vaccine that antigenically more closely matches these PRV variants could represent an added value to control these infections. METHODS The objective of this study was to develop new live attenuated and subunit vaccines against PRV variant strains. Genomic alterations of vaccine strains were based on the highly virulent SD-2017 mutant strain and gene-deleted strains SD-2017ΔgE/gI and SD-2017ΔgE/gI/TK, which constructed using homologous recombination technology. PRV gB-DCpep (Dendritic cells targeting peptide) and PorB (the outer membrane pore proteins of N. meningitidis) proteins containing gp67 protein secretion signal peptide were expressed using the baculovirus system for the preparation of subunit vaccines. We used experimental animal rabbits to test immunogenicity to evaluate the effect of the newly constructed PR vaccines. RESULTS Compared with the PRV-gB subunit vaccine and SD-2017ΔgE/gI inactivated vaccines, rabbits (n = 10) that were intramuscularly vaccinated with SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine showed significantly higher anti-PRV-specific antibodies as well as neutralizing antibodies and IFN-γ levels in serum. In addition, the SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine protected (90-100%) rabbits against homologous infection by the PRV variant strain. No obvious pathological damage was observed in these vaccinated rabbits. CONCLUSIONS The SD-2017ΔgE/gI/TK live attenuated vaccine provided 100% protection against PRV variant challenge. Interestingly, the subunit vaccines with gB protein linked to DCpep and PorB protein as adjuvant may also be a promising and effective PRV variant vaccine candidate.
Collapse
Affiliation(s)
- Hong-Liang Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Rui-Hua Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Gang Liu
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Gui-Mei Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Feng-Xue Wang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Yong-Jun Wen
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
| | - Hu Shan
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
5
|
Qin Y, Qin S, Huang X, Xu L, Ouyang K, Chen Y, Wei Z, Huang W. Isolation and identification of two novel pseudorabies viruses with natural recombination or TK gene deletion in China. Vet Microbiol 2023; 280:109703. [PMID: 36842367 DOI: 10.1016/j.vetmic.2023.109703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has gained increased attention in China in recent years due to outbreaks of emergent pseudorabies. However, there is limited information about the evolution and pathogenicity of emergent PRV field strains in China. In this study, two PRV field strains were isolated from an intensive pig farm with suspected PRV infection. These were named the GXLB-2015 and GXGG-2016 strains and their growth characteristics together with their genome sequences and pathogenicity were determined. Nucleotide homology and phylogenetic analysis revealed the GXLB-2015 stain was relatively close to the foreign PRV isolated strains with respect to the whole genome sequence. However, it formed an independent branch between the foreign PRV isolates and the previous PRV variants isolated in China. Further recombination and genetic evolution analysis showed that the GXLB-2015 strain was a natural recombinant between the Bartha strain and PRV variants. The GXGG-2016 strain was highly homologous with the Chinese classical strains, but it has a natural deletion of 69 aa in the thymidine kinase (TK) gene. Pathogenicity analysis showed that, the GXLB-2015 strain had the strongest pathogenicity to mice with an LD50 of 103.5, while the GXGG-2016 strain with the TK gene deletion was not pathogenic to mice. Taken together, our data provide direct evidence for the genomic recombination and natural TK gene deletion of PRVs, which may provide a reference for a better understanding of PRV evolution in China and contribute to the clinical control of PRV infection in pig farms.
Collapse
Affiliation(s)
- Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Shuying Qin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xiangmei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lishi Xu
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| |
Collapse
|
6
|
Chen H, Fan J, Sun X, Xie R, Song W, Zhao Y, Yang T, Cao Y, Yu S, Wei C, Hua L, Wang X, Chen H, Peng Z, Cheng G, Wu B. Characterization of Pseudorabies Virus Associated with Severe Respiratory and Neuronal Signs in Old Pigs. Transbound Emerg Dis 2023; 2023:1-12. [DOI: 10.1155/2023/8855739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Pseudorabies virus (PRV) represents a leading threat to the global pig industry. Generally, pigs exhibit a pronounced age resistance against PRV, and the virus generally does not cause severe clinical signs and even death in old pigs. However, we characterized two PRV strains (HeN21 and HuB20) associated with severe respiratory and neuronal signs in old pigs. Among these two strains, HeN21 was isolated from the tonsil of a 24-week-old pig that died from severe neuronal and respiratory signs in a PRV-outbreak farm where a commercial PRV attenuated vaccine developed based on a PRV variant was used; while, HuB20 was isolated from the lung and lymph node of a 20-week-old with symptoms in another farm where Bartha-K61 vaccine was used. In vitro evaluations in different cell models demonstrated that HeN21 and HuB20 led to similar cytotoxic effects to those caused by PRV variants on PK-15, Vero, and SK-N-SH cells after 30 hours of inoculation. However, HeN21 possessed a higher titer than the other PRV variants from the first to the fifth passage on PK-15 cells and induced plaques with larger size. In vivo assessments in mouse and fattening pig models showed that inoculations of HeN21 and HuB20 caused higher morbidity and mortality and severe pathological damages in tested animals. In particular, challenge of HeN21 led to severe respiratory and neuronal signs in 90-day-old pigs. These two strains displayed higher virus loads on the main organs of challenged mice and pigs. Phylogenetic analysis revealed that HeN21 and HuB20 belonged to genotype II. In addition, recombinant events were identified in the genomes of HeN21 and HuB20, and several events were located within genes associated with PRV virulence. Our data herein may suggest the emergence of novel PRV strains in China.
Collapse
Affiliation(s)
- Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuxiu Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Xie
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Song
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanxia Zhao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ting Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan Cao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shengwei Yu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Wei
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guofu Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|