1
|
Tang X, Xiong K, Zeng Y, Fang R. The Mechanism of Zinc Oxide in Alleviating Diarrhea in Piglets after Weaning: A Review from the Perspective of Intestinal Barrier Function. Int J Mol Sci 2024; 25:10040. [PMID: 39337525 PMCID: PMC11432186 DOI: 10.3390/ijms251810040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is one of the most challenging phases for piglets, and it is also the time when piglets are the most susceptible to diarrhea, which may result in significant economic losses for pig production. One of the dietary strategies for reducing post-weaning diarrhea (PWD) in piglets is to provide them with a pharmacological dose of zinc oxide (ZnO). However, excessive or long-term usage of high-dose ZnO has significant impacts on pig health and the ecological environment. Therefore, caution should be exercised when considering the use of high-dose ZnO for the prevention or treatment of PWD in piglets. In this paper, the significant role of zinc in animal health, the potential mode of action of ZnO in alleviating diarrhea, and the impact of innovative, highly efficient ZnO alternatives on the regulation of piglet diarrhea were reviewed to offer insights into the application of novel ZnO in pig production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China;
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550025, China;
| | - Rejun Fang
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Peng S, Zhang N, Zhang T, Zhang Y, Dong S, Wang H, Xu C, Wang C. Effects of Tetrabasic Zinc Chloride on the Diarrhea Rate, Intestinal Morphology, Immune Indices and Microflora of Weaned Piglets. Animals (Basel) 2024; 14:737. [PMID: 38473123 DOI: 10.3390/ani14050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This study was aimed to investigate the effects of different dietary zinc sources on the diarrhea rate, intestinal morphology, immune indexes and intestinal microbial composition of weaned piglets. A total of 240 weaned piglets (Duroc × Landrace × Yorkshire), at the age of 21 days, were randomly assigned to five dietary treatments for a four-week feeding trial to determine the effects of different amounts of tetrabasic zinc chloride (TBZC) supplementation on intestinal morphology, intestinal immune indices and intestinal microflora in weaned piglets, compared with the pharmacological dose of ZnO. The dietary treatments included a negative control (CON), (T1) ZnO (ZnO, 1500 mg/kg), (T2) tetrabasic zinc chloride (TBZC, 800 mg/kg), (T3) tetrabasic zinc chloride (TBZC, 1000 mg/kg), and (T4) tetrabasic zinc chloride (TBZC, 1200 mg/kg). Each treatment comprised six replicate pens, with eight pigs (four barrows and four gilts) per pen. Dietary TBZC of 1200 mg/kg improved the duodenum villus height, jejunum villus height and crypt depth of ileum, and increased the ratio of villus height to crypt depth of ileum (p < 0.05). The dietary supplementation of TBZC at a dosage of 1200 mg/kg has the potential to increase the levels of immunoglobulin G (IgG) and immunoglobulin A (IgA) in the duodenal mucosa. Furthermore, it shows a significant increase in the levels of immunoglobulin A (IgA) in the ileum. Compared with CON, TBZC significantly (p < 0.05) decreased pH values of stomach contents. It also increased the number of Firmicutes in intestinal contents. Compared with CON, the abundance of Firmicutes in jejunum contents of other treatments was significantly improved (p < 0.05), while the abundance of Proteobacteria in ileum contents of high-zinc treatments (T2 and T5) was decreased (p < 0.05). In conclusion, dietary TBZC of 1200 mg/kg improved the digestibility of crude protein in weaned piglets, altered the intestinal morphology of piglets, changed the intestinal microflora of piglets, reduced the diarrhea rate, and significantly improved the development of the small intestine of weaned piglets, and its regulation mechanism on intestinal tract needs further study. In summary, TBZC is likely to be an effective substitute source for the pharmacological dose of ZnO to control diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Shuyu Peng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Nan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tuan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huiyun Wang
- Changsha Xinjia Bio-Engineeriong Co., Ltd., Changsha 410300, China
| | - Cong Xu
- Changsha Xinjia Bio-Engineeriong Co., Ltd., Changsha 410300, China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Xiao X, Guo K, Liu J, Liu Y, Yang C, Xu Y, Deng B. The Effect of Sodium Alginate-Coated Nano-Zinc Oxide on the Growth Performance, Serum Indexes and Fecal Microbial Structure of Weaned Piglets. Animals (Basel) 2023; 14:146. [PMID: 38200877 PMCID: PMC10778004 DOI: 10.3390/ani14010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
High dose of zinc oxide (ZnO) could improve growth performance and alleviate disease status, whereas it caused serious environmental pollution and bacterial resistance. This study was to investigate whether low doses of sodium alginate-coated nano zinc oxide (saZnO), a new type of zinc resource, could serve as a potential alternative to pharmacological doses of traditional ZnO in weaned piglets. A total of 144 crossbred piglets were randomly allocated into three groups, including a basal diet without the addition of Zn (CON), a basal diet with 1600 mg Zn/kg from traditional ZnO (ZnO), and a basal diet with 500 mg Zn/kg from saZnO (saZnO). The experiment lasted for 28 days. The results showed that supplementing with ZnO and saZnO for 14 and 28 days significantly improved body weight (BW) and average daily gain (ADG) (p < 0.01) and markedly reduced the feed intake-to-gain ratio (F/G) (p < 0.05) and diarrhea rate. In addition, dietary ZnO and saZnO significantly increased the activities of the total antioxidant capacity (T-AOC) and alkaline phosphatase (ALP) (p < 0.01). Supplementing with saZnO also promoted the levels of superoxide dismutase (SOD), IgM and copper- and zinc-containing superoxide dismutase (Cu/Zn-SOD) in serum (p < 0.05), whereas a ZnO addition decreased the concentration of malondialdehyde (MDA) (p < 0.05), indicating the beneficial effect of Zn on antioxidant and immune functions. Piglets fed the ZnO diet showed higher serum Zn accumulations than those fed the CON and saZnO diets at d 28 (p < 0.01), and supplementing with ZnO and saZnO markedly contributed to Zn excretion in feces, especially in the ZnO diet (p < 0.01). Additionally, piglets fed the saZnO diet had greater valeric acid concentrations (p < 0.05) in their feces, while other short chain fatty acids (SCFAs) were not affected by different treatments (p > 0.05). Microbial alpha diversity was reduced in the saZnO group compared with the CON group (p < 0.05), while an obvious separation of microbial composition, the marker of beta diversity, was shown among the three groups (p < 0.05). At the genus level, six genera, including Clostridium_sensu_stricto_1, Terrisporobacter, f_Muribaculaceae, Subdoligranulum and Intestinibacter, were pronouncedly increased in the ZnO and saZnO groups (p < 0.05); another nine species were dramatically downregulated, such as f_Lachnospiraceae, f_Prevotellaceae, f_Butyricicoccaceae and f_Ruminococcaceae (p < 0.05). Finally, a functional analysis indicated that altered microbes significantly changed the "Metabolism" pathway (p < 0.05). These findings suggested that saZnO could act as a feasible substitute for ZnO to reduce Zn emission and enhance growth performance, antioxidant and immune functions, and to adjust the structure of gut microbiota in piglets.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (X.X.); (K.G.); (Y.X.)
| | - Kai Guo
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (X.X.); (K.G.); (Y.X.)
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, Huzhou 313300, China; (J.L.); (Y.L.); (C.Y.)
| | - Yulan Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, Huzhou 313300, China; (J.L.); (Y.L.); (C.Y.)
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, Huzhou 313300, China; (J.L.); (Y.L.); (C.Y.)
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (X.X.); (K.G.); (Y.X.)
| | - Bo Deng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Effects of Protein-Chelated Zinc Combined with Mannan-Rich Fraction to Replace High-Dose Zinc Oxide on Growth Performance, Nutrient Digestibility, and Intestinal Health in Weaned Piglets. Animals (Basel) 2022; 12:ani12233407. [PMID: 36496927 PMCID: PMC9739869 DOI: 10.3390/ani12233407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A total of 168 weaned piglets (average initial body weight of 7.70 ± 0.75 kg) were used in a 4-week feeding trial to investigate the effects of dietary supplementation with protein-chelated zinc (Zn-Pro) alone or combined with a mannan-rich fraction (MRF) to replace high-dose zinc oxide (ZnO) for weaned piglets. The dietary treatments included a basal diet as control (CON), a ZnO diet (basal diet + 1600 mg Zn/kg from ZnO), a Zn-Pro diet (basal diet + 60 mg Zn/kg from Zn-Pro), and a MRF plus Zn-Pro diet (MRP, basal diet + 800 mg/kg MRF + 60 mg Zn/kg from Zn-Pro). The average daily gain of piglets in the MRP group was higher (p ≤ 0.05) than that in CON and Zn-Pro groups during d 15-28 and d 1-28 of experiment. The apparent total tract digestibility of dry matter, organic matter, and crude protein in the MRP group was higher (p ≤ 0.05) than that in the CON group. The serum insulin-like growth factor-1 level in the MRP group was markedly higher (p ≤ 0.05) than that of piglets in the other three treatment groups. Piglets fed the Zn-Pro and ZnO diets had greater (p ≤ 0.05) acetic acid in cecal digesta than those fed the CON diet, while the MRP diet had higher (p ≤ 0.05) cecal propionate concentration than those that were fed the CON diet on d 28 of experiment. Moreover, the villus height of ileum in the MRP group tended to be greater than the CON group (p = 0.09). Compared with the CON and MRP groups, the relative abundance of Lactobacillaceae (p = 0.08) and Lachnospiraceae (p = 0.09) in the Zn-Pro group showed an increasing trend. The relative abundance of Prevotellaceae in the Zn-Pro group was significantly lower (p ≤ 0.05) than that in the MRP group. In conclusion, the combined addition of MRF and Zn-Pro acted as a suitable alternative to ZnO to beneficially support the growth performance and intestinal health of weaned piglets, as well as contribute to a lower diarrhea rate and environmental pollution from fecal zinc excretion.
Collapse
|