1
|
Bakoev S, Getmantseva L, Kolosova M, Bakoev F, Kolosov A, Romanets E, Shevtsova V, Romanets T, Kolosov Y, Usatov A. Identifying Significant SNPs of the Total Number of Piglets Born and Their Relationship with Leg Bumps in Pigs. BIOLOGY 2024; 13:1034. [PMID: 39765701 PMCID: PMC11673605 DOI: 10.3390/biology13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to identify genetic variants and pathways associated with the total number of piglets born and to investigate the potential negative consequences of the intensive selection for reproductive traits, particularly the formation of bumps on the legs of pigs. We used genome-wide association analysis and methods for identifying selection signatures. As a result, 47 SNPs were identified, localized in genes that play a significant role during sow pregnancy. These genes are involved in follicle growth and development (SGC), early embryonic development (CCDC3, LRRC8C, LRFN3, TNFRSF19), endometrial receptivity and implantation (NEBL), placentation, and embryonic development (ESRRG, GHRHR, TUSC3, NBAS). Several genes are associated with disorders of the nervous system and brain development (BCL11B, CDNF, ULK4, CC2D2A, KCNK2). Additionally, six SNPs are associated with the formation of bumps on the legs of pigs. These variants include intronic variants in the CCDC3, ULK4, and MINDY4 genes, as well as intergenic variants, regulatory region variants, and variants in the exons of non-coding transcripts. The results suggest important biological pathways and genetic variants associated with sow fertility and highlight the potential negative impacts on the health and physical condition of pigs.
Collapse
Affiliation(s)
- Siroj Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Lyubov Getmantseva
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Maria Kolosova
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Faridun Bakoev
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Anatoly Kolosov
- All Russian Research Institute of Animal Breeding, Lesnye Polyany 141212, Russia;
| | - Elena Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Varvara Shevtsova
- Southern Scientific Center Russian Academy of Sciences, Rostov-on-Don 344006, Russia;
| | - Timofey Romanets
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Yury Kolosov
- Biotechnological Faculty, Don State Agrarian University, Persianovsky 346493, Russia; (S.B.); (M.K.); (F.B.); (E.R.); (T.R.); (Y.K.)
| | - Alexander Usatov
- Academy of Biology and Biotechnology Named After D.I. Ivanovsky, Southern Federal University, Rostov-on-Don 344006, Russia;
| |
Collapse
|
2
|
Sun MH, Zhan CL, Li XH, Lee SH, Cui XS. Transcriptome analysis of the effects of high temperature on zygotic genome activation in porcine embryos. Sci Rep 2024; 14:21849. [PMID: 39300156 DOI: 10.1038/s41598-024-73166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Damage to the development of porcine gametes and embryos caused by high temperatures (HT) is one of the main reasons for the decline in the economic benefits of the livestock industry. Zygotic genome activation (ZGA) marks the beginning of gene expression programs in mammalian pre-implantation embryos. In pigs, ZGA occurs at the 4-cell (4 C) stage, indicating that correct gene expression at this stage plays an important regulatory role in embryonic development. However, the effect of the HT environment on early porcine embryonic development and the RNA expression profile of ZGA remain unclear. In this study, we compared the RNA transcription patterns of porcine 4 C embryos under normal and HT conditions using RNA-seq and identified 326 differentially expressed genes (DEGs). These changes were mainly related to DNA polymerase activity, DNA replication, and nucleotidyltransferase activity. In addition, entries for reverse transcription and endonuclease activity were enriched, indicating that ZGA interfered under HT conditions. Further comparison of the experimental results with the porcine ZGA gene revealed 39 ZGA genes among the DEGs. KEGG and GSEA analysis showed that the oxidative phosphorylation pathway was significantly enriched and signaling pathways related to energy metabolism were significantly downregulated. We also found that NDUFA6 and CDKN1A were located at the center of the protein-protein interaction network diagram of the DEGs. In summary, HT conditions affect mitochondrial function and oxidative phosphorylation levels, and lead to changes in the expression pattern of ZGA in early porcine embryos, with its hub genes NDUFA6 and CDKN1A.
Collapse
Affiliation(s)
- Ming-Hong Sun
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
- Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Cheng-Lin Zhan
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
3
|
Ducreux B, Barberet J, Guilleman M, Pérez-Palacios R, Teissandier A, Bourc’his D, Fauque P. Assessing the influence of distinct culture media on human pre-implantation development using single-embryo transcriptomics. Front Cell Dev Biol 2023; 11:1155634. [PMID: 37435029 PMCID: PMC10330962 DOI: 10.3389/fcell.2023.1155634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
The use of assisted reproductive technologies is consistently rising across the world. However, making an informed choice on which embryo culture medium should be preferred to ensure satisfactory pregnancy rates and the health of future children critically lacks scientific background. In particular, embryos within their first days of development are highly sensitive to their micro-environment, and it is unknown how their transcriptome adapts to different embryo culture compositions. Here, we determined the impact of culture media composition on gene expression in human pre-implantation embryos. By employing single-embryo RNA-sequencing after 2 or 5 days of the post-fertilization culture in different commercially available media (Ferticult, Global, and SSM), we revealed medium-specific differences in gene expression changes. Embryos cultured pre-compaction until day 2 in Ferticult or Global media notably displayed 266 differentially expressed genes, which were related to essential developmental pathways. Herein, 19 of them could have a key role in early development, based on their previously described dynamic expression changes across development. When embryos were cultured after day 2 in the same media considered more suitable because of its amino acid enrichment, 18 differentially expressed genes thought to be involved in the transition from early to later embryonic stages were identified. Overall, the differences were reduced at the blastocyst stage, highlighting the ability of embryos conceived in a suboptimal in vitro culture medium to mitigate the transcriptomic profile acquired under different pre-compaction environments.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
| | - Julie Barberet
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Magali Guilleman
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Raquel Pérez-Palacios
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | - Patricia Fauque
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| |
Collapse
|
4
|
Zhang D, Zhou Y, Huang R, Zhai Y, Wu D, An X, Zhang S, Shi L, Li Q, Kong X, Yu H, Li Z. LncRNA affects epigenetic reprogramming of porcine embryo development by regulating global epigenetic modification and the downstream gene SIN3A. Front Physiol 2022; 13:971965. [PMID: 36187791 PMCID: PMC9523245 DOI: 10.3389/fphys.2022.971965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The study of preimplantation development is of great significance to reproductive biology and regenerative medicine. With the development of high-throughput deep sequencing technology, it has been found that lncRNAs play a very important role in the regulation of embryonic development. In this study, key lncRNAs that regulate embryonic development were screened by analyzing the expression pattern of lncRNAs in porcine in vivo fertilization (IVV) embryos. By knocking down lncRNA expression in in vitro fertilization (IVF) embryos, we investigated its function and mechanism of regulating embryonic development. The results showed that the expression pattern of lncRNA was consistent with the time of gene activation. The lncRNAs were highly expressed in the 4-cell to blastocyst stage but barely expressed in the oocytes and 2-cell stage. So we speculated this part of lncRNAs may regulate gene expression. The lncRNA LOC102165808 (named lncT because the gene near this lncRNA is TFAP2C) was one of them. The knockdown (KD) of lncT inhibited embryonic development, resulting in decreased H3K4me3, H3K4me2, and H3K9me3, and increased DNA methylation. Meanwhile, RNAseq showed SIN3A was the top decreased gene in lncT-KD embryos. There was a severe blastocyst formation defect in SIN3A-KD embryos. Both lncT and SIN3A could affect NANOG and induce more cell apoptosis. In conclusion, the knockdown of lncT inhibits embryonic development by regulating H3K4me3, H3K4me2, DNA methylation, pluripotency gene, and apoptosis, and SIN3A is one of the downstream genes of lncT in regulating embryonic development.
Collapse
Affiliation(s)
- Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Rong Huang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Di Wu
- Department of Emergency Medicine, First Hospital, Jilin University, Changchun, China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Lijing Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangjie Kong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- *Correspondence: Ziyi Li,
| |
Collapse
|