1
|
Chen HC, Wang J, Shyr Y, Liu Q. FindAdapt: A python package for fast and accurate adapter detection in small RNA sequencing. PLoS Comput Biol 2024; 20:e1011786. [PMID: 38252662 PMCID: PMC10833567 DOI: 10.1371/journal.pcbi.1011786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/01/2024] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Adapter trimming is an essential step for analyzing small RNA sequencing data, where reads are generally longer than target RNAs ranging from 18 to 30 bp. Most adapter trimming tools require adapter information as input. However, adapter information is hard to access, specified incorrectly, or not provided with publicly available datasets, hampering their reproducibility and reusability. Manual identification of adapter patterns from raw reads is labor-intensive and error-prone. Moreover, the use of randomized adapters to reduce ligation biases during library preparation makes adapter detection even more challenging. Here, we present FindAdapt, a Python package for fast and accurate detection of adapter patterns without relying on prior information. We demonstrated that FindAdapt was far superior to existing approaches. It identified adapters successfully in 180 simulation datasets with diverse read structures and 3,184 real datasets covering a variety of commercial and customized small RNA library preparation kits. FindAdapt is stand-alone software that can be easily integrated into small RNA sequencing analysis pipelines.
Collapse
Affiliation(s)
- Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Chen W, Li Z, Zhong R, Sun W, Chu M. Expression profiles of oviductal mRNAs and lncRNAs in the follicular phase and luteal phase of sheep (Ovis aries) with 2 fecundity gene (FecB) genotypes. G3 (BETHESDA, MD.) 2023; 14:jkad270. [PMID: 38051961 PMCID: PMC10755197 DOI: 10.1093/g3journal/jkad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
FecB (also known as BMPR1B) is a crucial gene in sheep reproduction, which has a mutation (A746G) that was found to increase the ovulation rate and litter size. The FecB mutation is associated with reproductive endocrinology, such mutation can control external estrous characteristics and affect follicle-stimulating hormone during the estrous cycle. Previous researches showed that the FecB mutation can regulate the transcriptomic profiles in the reproductive-related tissues including hypothalamus, pituitary, and ovary during the estrous cycle of small-tailed Han (STH) sheep. However, little research has been reported on the correlation between FecB mutation and the estrous cycle in STH sheep oviduct. To investigate the coding and noncoding transcriptomic profiles involved in the estrous cycle and FecB in the sheep oviduct, RNA sequencing was performed to analyze the transcriptomic profiles of mRNAs and long noncoding RNAs (lncRNAs) in the oviduct during the estrous cycle of STH sheep with mutant (FecBBB) and wild-type (FecB++) genotypes. In total, 21,863 lncRNAs and 43,674 mRNAs were screened, the results showed that mRNAs had significantly higher expression levels than the lncRNAs, and the expression levels of these screened transcripts were lower in the follicular phase than they were in the luteal phase. Among them, the oviductal glycoprotein gene (OVGP1) had the highest expression level. In the comparison between the follicular and luteal phases, 57 differentially expressed (DE) lncRNAs and 637 DE mRNAs were detected, including FSTL5 mRNA and LNC_016628 lncRNA. In the comparison between the FecBBB and FecB++ genotypes, 26 DE lncRNAs and 421 DE mRNAs were detected, including EEF1D mRNA and LNC_006270 lncRNA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis indicated that the DE mRNAs were enriched mainly in terms related to reproduction such as the tight junction, SAGA complex, ATP-binding cassette, nestin, and Hippo signaling pathway. The interaction network between DE lncRNAs and DE mRNAs indicated that LNC_018420 may be the key regulator in sheep oviduct. Together, our results can provide novel insights into the oviductal transcriptomic function against a FecB mutation background in sheep reproduction.
Collapse
Affiliation(s)
- Weihao Chen
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhifeng Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Wang J, Chen H, Zeng X. Identification of hub genes associated with follicle development in multiple births sheep by WGCNA. Front Vet Sci 2022; 9:1057282. [PMID: 36601328 PMCID: PMC9806849 DOI: 10.3389/fvets.2022.1057282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Sheep exhibit a distinct estrous cycle that includes four different phases: proestrus, estrus, late estrus, and luteal phase. As the estrous cycle repeats, follicular development regularly alternates. We thus investigated ovarian transcriptome data from each of the four phases using weighted gene co-expression network analysis (WGCNA) to identify modules, pathways, and genes essential to follicle growth and development. We clustered mRNA and long non-coding RNA (lncRNA) into different modules by WGCNA, and calculated correlation coefficients between genes and Stages of the estrous cycle. Co-expression of the black module (cor = 0.81, P<0.001) and the yellow module (cor = 0.61, P<0.04) was found to be critical for follicle growth and development. A total of 2066 genes comprising the black and yellow modules was used for functional enrichment. The results reveal that these genes are mainly enriched in Cell cycle, PI3K-Akt signaling pathway, Oocyte meiosis, Apoptosis, and other important signaling pathways. We also identified seven hub genes (BUB1B, MAD2L1, ASPM, HSD3B1, WDHD1, CENPA, and MXI1) that may play a role in follicle development. Our study may provide several important new markers allowing in depth exploration of the genetic basis for multiparous reproduction in sheep.
Collapse
Affiliation(s)
- Jinglei Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hanying Chen
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Xiancun Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, China,*Correspondence: Xiancun Zeng
| |
Collapse
|
4
|
Di R, Zhang R, Mwacharo JM, Wang X, He X, Liu Y, Zhang J, Gong Y, Zhang X, Chu M. Characteristics of piRNAs and their comparative profiling in testes of sheep with different fertility. Front Genet 2022; 13:1078049. [PMID: 36568364 PMCID: PMC9768229 DOI: 10.3389/fgene.2022.1078049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
As a novel class of small RNAs, piRNAs are highly expressed in the animal gonads and their main known role is to inhibit transposon activity for ensuring the correctness and integrity of genome. In order to explore the characteristics of piRNAs in sheep testis and their possible regulatory roles on male reproduction, deep sequencing technology was used to sequence small RNAs and identify piRNAs in testes of sheep. The length of piRNAs in sheep testes showed a unimodal distribution between 26 and 31 nt, with a peak at 29 nt. These piRNAs exhibited obvious ping-pong signature and strand specificity. In the genome, they were mainly aligned to CDS, intron, repetitive sequence regions and unannotated regions. Furthermore, in transposon analysis, piRNAs were aligned predominantly to LINE, SINE, and LTR types of retrotransposon in sheep testes, and the piRNAs derived from each type showed obvious ping-pong signature. The piRNA clusters identified in sheep testes were mainly distributed on chromosomes 3, 7, 15, 17, 18 and 20. The results combining semen determination with pathway enrichment analysis implied that differentially expressed piRNAs between the testes of rams with different fertility might participate in spermatogenesis by regulating multiple pathways closely related to stabilization of blood-testis barrier and renewal and differentiation of spermatogonial stem cell. Taken together, the study provided new insights into the characteristics, origin and expression patterns of piRNAs in sheep testes tissue, which would help us better understand the role of piRNAs in sheep reproduction.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,School of Advanced Agricultural Sciences, Yiyang Vocational & Technical College, Yiyang, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia,Institute of Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yiming Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| |
Collapse
|