1
|
Robertson JL, Dervisis N, Rossmeisl J, Nightengale M, Fields D, Dedrick C, Ngo L, Issa AS, Guruli G, Orlando G, Senger RS. Cancer detection in dogs using rapid Raman molecular urinalysis. Front Vet Sci 2024; 11:1328058. [PMID: 38384948 PMCID: PMC10879274 DOI: 10.3389/fvets.2024.1328058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The presence of cancer in dogs was detected by Raman spectroscopy of urine samples and chemometric analysis of spectroscopic data. The procedure created a multimolecular spectral fingerprint with hundreds of features related directly to the chemical composition of the urine specimen. These were then used to detect the broad presence of cancer in dog urine as well as the specific presence of lymphoma, urothelial carcinoma, osteosarcoma, and mast cell tumor. Methods Urine samples were collected via voiding, cystocentesis, or catheterization from 89 dogs with no history or evidence of neoplastic disease, 100 dogs diagnosed with cancer, and 16 dogs diagnosed with non-neoplastic urinary tract or renal disease. Raman spectra were obtained of the unprocessed bulk liquid urine samples and were analyzed by ISREA, principal component analysis (PCA), and discriminant analysis of principal components (DAPC) were applied using the Rametrix®Toolbox software. Results and discussion The procedure identified a spectral fingerprint for cancer in canine urine, resulting in a urine screening test with 92.7% overall accuracy for a cancer vs. cancer-free designation. The urine screen performed with 94.0% sensitivity, 90.5% specificity, 94.5% positive predictive value (PPV), 89.6% negative predictive value (NPV), 9.9 positive likelihood ratio (LR+), and 0.067 negative likelihood ratio (LR-). Raman bands responsible for discerning cancer were extracted from the analysis and biomolecular associations were obtained. The urine screen was more effective in distinguishing urothelial carcinoma from the other cancers mentioned above. Detection and classification of cancer in dogs using a simple, non-invasive, rapid urine screen (as compared to liquid biopsies using peripheral blood samples) is a critical advancement in case management and treatment, especially in breeds predisposed to specific types of cancer.
Collapse
Affiliation(s)
- John L. Robertson
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA, United States
- Rametrix Technologies Inc., Blacksburg, VA, United States
| | - Nikolas Dervisis
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - John Rossmeisl
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Marlie Nightengale
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Daniel Fields
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Cameron Dedrick
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Lacey Ngo
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Amr Sayed Issa
- Rametrix Technologies Inc., Blacksburg, VA, United States
| | - Georgi Guruli
- Department of Surgery, VCU Health, Richmond, VA, United States
| | - Giuseppe Orlando
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Ryan S. Senger
- Rametrix Technologies Inc., Blacksburg, VA, United States
- Department of Biological Systems Engineering, College of Agriculture & Life Sciences and College of Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|