1
|
Shen M, Li Z, Wang J, Xiang H, Xie Q. Traditional Chinese herbal medicine: harnessing dendritic cells for anti-tumor benefits. Front Immunol 2024; 15:1408474. [PMID: 39364399 PMCID: PMC11446781 DOI: 10.3389/fimmu.2024.1408474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Chinese Herbal Medicine (CHM) is being more and more used in cancer treatment because of its ability to regulate the immune system. Chinese Herbal Medicine has several advantages over other treatment options, including being multi-component, multi-target, and having fewer side effects. Dendritic cells (DCs) are specialized antigen presenting cells that play a vital part in connecting the innate and adaptive immune systems. They are also important in immunotherapy. Recent evidence suggests that Chinese Herbal Medicine and its components can positively impact the immune response by targeting key functions of dendritic cells. In this review, we have summarized the influences of Chinese Herbal Medicine on the immunobiological feature of dendritic cells, emphasized an anti-tumor effect of CHM-treated DCs, and also pointed out deficiencies in the regulation of DC function by Chinese Herbal Medicine and outlined future research directions.
Collapse
Affiliation(s)
- Mengyi Shen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhen Li
- School of Preventive Medicine Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
2
|
Liang S, Meng J, Tang Z, Xie X, Tian M, Ma X, Yang X, Xiao D, Wang S. Licorice Extract Supplementation Benefits Growth Performance, Blood Biochemistry and Hormones, Immune Antioxidant Status, Hindgut Fecal Microbial Community, and Metabolism in Beef Cattle. Vet Sci 2024; 11:356. [PMID: 39195810 PMCID: PMC11359752 DOI: 10.3390/vetsci11080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to evaluate the effects of licorice extract (LE) on growth performance, nutrient apparent digestibility, serum index (biochemistry, hormones, humoral immunity, and antioxidant function), hindgut fecal microbiota, and metabolism in beef cattle. In total, 12 male yellow cattle aged 12 months were divided into two groups (6 cattle per group): the basal diet (CK group) and the basal diet supplemented with 2 g/kg LE (CHM group). The entire experimental phase lasted for 120 days, including a 30-day pre-feeding period. Compared to the CK group, the average daily gain, crude fiber, calcium, and crude protein nutrient digestibility were greater on d 30 than d 60 (p < 0.05) and the feed meat ratio was lower for LE addition (p < 0.01). In terms of serum indexes, the insulin and nitric oxide contents were enhanced on d 30, the alkaline phosphatase level was improved on d 60, and the levels of albumin, immunoglobulin A, and catalase were increased on d 90 (p < 0.05). In contrast, the cholesterol content was lower on d 60 for LE addition compared with the CK group (p < 0.05). The higher enrichment of [Eubacterium]-oxidoreducens-group, p-2534-18b5-gut-group, and Ileibacterium were observed in the CHM group (p < 0.05), while the relative abundances of Gallibacterium and Breznakia in the CHM group were lower compared with the CK group (p < 0.05). In addition, the differential metabolites related to healthy growth in the CHM group were increased compared with the CK group. And there was a close correlation between hindgut microbiota and metabolic differentials. In general, LE has a promoting effect on the growth performance and health status of beef cattle over a period (30 to 60 days).
Collapse
Affiliation(s)
- Sunzhen Liang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Jinzhu Meng
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Zining Tang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xinxin Xie
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Miaomiao Tian
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xiaowan Ma
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xiao Yang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuilian Wang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| |
Collapse
|
3
|
Li T, Qin W, Wu B, Jin X, Zhang R, Zhang J, Du L. Effects of glycyrrhiza polysaccharides on growth performance, meat quality, serum parameters and growth/meat quality-related gene expression in broilers. Front Vet Sci 2024; 11:1357491. [PMID: 38435364 PMCID: PMC10904541 DOI: 10.3389/fvets.2024.1357491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
With growing restrictions on the use of antibiotics in animal feed, plant extracts are increasingly favored as natural feed additive sources. Glycyrrhiza polysaccharide (GP), known for its multifaceted biological benefits including growth promotion, immune enhancement, and antioxidative properties, has been the focus of recent studies. Yet, the effects and mechanisms of GP on broiler growth and meat quality remain to be fully elucidated. This study aimed to investigate the effects of GP on growth, serum biochemistry, meat quality, and gene expression in broilers. The broilers were divided into five groups, each consisting of five replicates with six birds. These groups were supplemented with 0, 500, 1,000, 1,500, and 2,000 mg/kg of GP in their basal diets, respectively, for a period of 42 days. The results indicated that from day 22 to day 42, and throughout the entire experimental period from day 1 to day 42, the groups receiving 1,000 and 1,500 mg/kg of GP showed a significant reduction in the feed-to-gain ratio (F:G) compared to the control group. On day 42, an increase in serum growth hormone (GH) levels was shown in groups supplemented with 1,000 mg/kg GP or higher, along with a significant linear increase in insulin-like growth factor-1 (IGF-1) concentration. Additionally, significant upregulation of GH and IGF-1 mRNA expression levels was noted in the 1,000 and 1,500 mg/kg GP groups. Furthermore, GP significantly elevated serum concentrations of alkaline phosphatase (AKP) and globulin (GLB) while reducing blood urea nitrogen (BUN) levels. In terms of meat quality, the 1,500 and 2,000 mg/kg GP groups significantly increased fiber density in pectoral muscles and reduced thiobarbituric acid (TBA) content. GP also significantly decreased cooking loss rate in both pectoral and leg muscles and the drip loss rate in leg muscles. It increased levels of linoleic acid and oleic acid, while decreasing concentrations of stearic acid, myristic acid, and docosahexaenoic acid. Finally, the study demonstrated that the 1,500 mg/kg GP group significantly enhanced the expression of myogenin (MyoG) and myogenic differentiation (MyoD) mRNA in leg muscles. Overall, the study determined that the optimal dosage of GP in broiler feed is 1,500 mg/kg.
Collapse
Affiliation(s)
- Tiyu Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Weize Qin
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Baiyila Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingyi Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
4
|
Ji X, Hou H, Wang X, Qiu Y, Ma Y, Wang S, Guo S, Huang S, Zhang C. Effect of dietary Glycyrrhiza polysaccharides on growth performance, hepatic antioxidant capacity and anti-inflammatory capacity of broiler chickens. Res Vet Sci 2024; 167:105114. [PMID: 38171137 DOI: 10.1016/j.rvsc.2023.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The primary aim of this study was to investigate the impact of varying levels of dietary Glycyrrhiza polysaccharides (GPS) on the health status of broiler chickens. A total of 288 1-day-old Arbor Acres broilers were randomly assigned to four groups with six replicates, consisting of 12 chickens in each replicate. The control group (CON) was provided with the basal diet, while the experimental groups were administered 300, 600, and 900 mg/kg of GPS in the basal diet for 42 days. The results demonstrated a significant enhancement in average daily gain (ADG) as a result of GPS supplementation (P < 0.05). The dietary GPS significantly elevated total antioxidation capability (T-AOC) and the activity of antioxidant enzymes (P < 0.05), while effectively reducing the levels of malondialdehyde (MDA) in the serum and liver (P < 0.05). Administration of GPS notably inhibited the toll-like receptor 4 (TLR4) signaling pathway (P < 0.05), decreased interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) levels (P < 0.05), and increased IL-4 and IL-10 levels (P < 0.05). Additionally, the expression of crucial regulators involved in liver lipid metabolism, including sterol regulatory element binding protein 1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) were significantly reduced (P < 0.05). In contrast, the expression of peroxisome proliferator-activated receptor alpha (PPAR-α) was significantly enhanced in the GPS-supplemented groups (P < 0.05). In conclusion, the supplementation of GPS positively influenced the growth performance, the anti-inflammatory and antioxidant capacity of the liver, as well as liver lipid metabolism in broilers.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Huining Hou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang 471023, China.
| |
Collapse
|
5
|
Hu W, Huang K, Zhang L, Ni J, Xu W, Bi S. Immunomodulatory effect of Atractylodis macrocephala Koidz. polysaccharides in vitro. Poult Sci 2024; 103:103171. [PMID: 37925772 PMCID: PMC10652128 DOI: 10.1016/j.psj.2023.103171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Vaccination is still the main method of preventing most infectious diseases, but there are inefficiencies and inaccuracies in immunization. Studies have reported that Atractylodis macrocephalae Koidz. polysaccharides (RAMP) have immunomodulatory effects, but the mechanisms involved in whether they can modulate the immune response in chickens are not yet clear. The aim of this study was to investigate the effect of RAMP on lymphocytes functions by analyzing cell proliferation, cell cycle, mRNA expression of cytokines and CD4 +/CD8 + ratio. To identify potential molecules involved in immune regulation, we performed a comprehensive transcriptome profiling of chicken lymphocytes. In addition, the adjuvant effect of RAMP was evaluated by detecting indicators of hemagglutination inhibition. When lymphocytes were cultured with RAMP in vitro, the proliferation rate of lymphocytes was increased (P < 0.01), more cells in S phase and G2/M phase (P < 0.01) and the mRNA expression of IFN-γ was upregulated (P < 0.05), while the mRNA expression of TGF-β (P < 0.01) and IL-4 (P < 0.05) was downregulated and the CD4 +/CD8 + ratio was increased (P < 0.05). Transcriptomic results showed that RAMP increased the expression of HIST1H46 (P < 0.05) and CENPP (P < 0.05). Validation of qPCR showed that RAMP may play an important role in regulating cellular immunity by downregulating the Notch pathway. The results also showed that RAMP could increase the serum Newcastle disease virus antibody levels in chickens. These data suggest that RAMP could enhance immune function of lymphocytes and was a candidate vaccine adjuvant in chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Kaiyue Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jingxuan Ni
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
6
|
Yang Y, Liu Y, Lou R, Lei Y, Li G, Xu Z, You X. Glycyrrhiza polysaccharides inhibits PRRSV replication. Virol J 2023; 20:140. [PMID: 37408066 DOI: 10.1186/s12985-023-02052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/25/2023] [Indexed: 07/07/2023] Open
Abstract
Glycyrrhiza polysaccharide (GCP) is a natural plant active polysaccharide extracted from traditional Chinese medicine licorice. In this research, we studied the antiviral activity of glycyrrhiza polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV), a virus of the Arteriviridae family, with a high rate of variation and has caused huge economic losses to the pig industry in various countries since its discovery. Our results show that GCP can inhibit PRRSV replication in a dose-dependent manner. Furthermore, GCP could inhibit the mRNA expression of receptor genes CD163 and NF-κB p65 and promote the mRNA expression of the SLA-7 gene. Because of these results, GCP can be used as a candidate drug to prevent and treat PRRS.
Collapse
Affiliation(s)
- Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Yongjian Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Ran Lou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Gan Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Zhiqian Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China
| | - Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, 471023, China.
| |
Collapse
|
7
|
Wei X, Li N, Wu X, Cao G, Qiao H, Wang J, Hao R. The preventive effect of Glycyrrhiza polysaccharide on lipopolysaccharide-induced acute colitis in mice by modulating gut microbial communities. Int J Biol Macromol 2023; 239:124199. [PMID: 36972824 DOI: 10.1016/j.ijbiomac.2023.124199] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Acute colitis is characterised by an unpredictable onset and causes intestinal flora imbalance together with microbial migration, which leads to complex parenteral diseases. Dexamethasone, a classic drug, has side effects, so it is necessary to use natural products without side effects to prevent enteritis. Glycyrrhiza polysaccharide (GPS) is an α-d-pyranoid polysaccharide with anti-inflammatory effects; however, its anti-inflammatory mechanism in the colon remains unknown. This study investigated whether GPS reduces the lipopolysaccharide (LPS)-induced inflammatory response in acute colitis. The results revealed that GPS attenuated the upregulation of tumour necrosis factor-α, interleukin (IL)-1β, and IL-6 in the serum and colon tissues and significantly reduced the malondialdehyde content in colon tissues. In addition, the 400 mg/kg GPS group showed higher relative expressions of occludin, claudin-1, and zona occludens-1 in colon tissues and lower concentrations of diamine oxidase, D-lactate, and endotoxin in the serum than the LPS group did, indicating that GPS improved the physical and chemical barrier functions of colon tissues. GPS increased the abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, and Akkermansia, whereas pathogenic bacteria, such as Oscillospira and Ruminococcus were inhibited. Our findings indicate that GPS can effectively prevent LPS-induced acute colitis and exert beneficial effects on the intestinal health.
Collapse
Affiliation(s)
- Xinxin Wei
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Na Li
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Guidong Cao
- Shanxi Ruixiang Bio Pharmaceutical Co., Ltd, Taiyuan 030032, China
| | - Hongping Qiao
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030012, China
| | - Jing Wang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
8
|
Du J, Cao L, Gao J, Jia R, Zhu H, Nie Z, Xi B, Yin G, Ma Y, Xu G. Protective Effects of Glycyrrhiza Total Flavones on Liver Injury Induced by Streptococcus agalactiae in Tilapia ( Oreochromis niloticus). Antibiotics (Basel) 2022; 11:1648. [PMID: 36421292 PMCID: PMC9686810 DOI: 10.3390/antibiotics11111648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 07/30/2023] Open
Abstract
Clinical studies have confirmed that Glycyrrhiza total flavones (GTFs) have good anti-hepatic injury, but whether they have a good protective effect on anti-hepatic injury activity induced by Streptococcus agalactiae in tilapia (Oreochromis niloticus) is unknown. The aims of this study were to investigate the protective effects of Glycyrrhiza total flavones on liver injury induced by S. agalactiae (SA) and its underlying mechanism in fish. A total of 150 tilapia were randomly divided into five groups, each with three replicates containing 10 fish: normal control group, S. agalactiae infection group, and three Glycyrrhiza total flavone treatment groups (addition of 0.1, 0.5, or 1.0 g of GTF to 1 kg of feed). The normal control group was only fed with basic diet, after 60 d of feeding, and intraperitoneal injection of the same volume of normal saline (0.05 mL/10 g body weight); the S. agalactiae infection group was fed with basic diet, and the S. agalactiae solution was intraperitoneally injected after 60 d of feeding (0.05 mL/10 g body weight); the three GTF treatment groups were fed with a diet containing 0.1, 0.5, or 1.0 g/kg of GTF, and the S. agalactiae solution was intraperitoneally injected after 60 d of feeding (0.05 mL/10 g body weight). After 48 h injection, blood and liver tissues were collected to measure biochemical parameters and mRNA levels to evaluate the liver protection of GTFs. Compared with the control group, the serum levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), alkaline phosphatase (AKP) and glucose (GLU) in the streptococcal infection group increased significantly, while the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) decreased significantly; observations of pathological sections showed obvious damage to the liver tissue structure in response to streptococcal infection. S. agalactiae can also cause fatty liver injury, affecting the function of fatty acid β-oxidation and biosynthesis in the liver of tilapia, and also causing damage to function of the immune system. The addition of GTFs to the diet could improve oxidative stress injury caused by S. agalactiae in tilapia liver tissue to different degrees, promote the β-oxidation of fatty acids in the liver, accelerate the lipid metabolism in the liver, and repair the damaged liver tissue. GTFs have a good protective effect on liver injury caused by streptococcus.
Collapse
Affiliation(s)
- Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bingwen Xi
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Guojun Yin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|