1
|
Vasu M, Ahlawat S, Arora R, Sharma R. Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review. Mamm Genome 2025:10.1007/s00335-025-10109-z. [PMID: 39904908 DOI: 10.1007/s00335-025-10109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
2
|
Fu J, Zhang X, Wang D, Liu W, Zhang C, Wang W, Fan W, Zhang L, Sun F. Analysis of the Long Non-Coding and Messenger RNA Expression Profiles in the Skin Tissue of Super Merino and Small-Tailed Han Sheep. Curr Issues Mol Biol 2024; 46:9588-9606. [PMID: 39329922 PMCID: PMC11430798 DOI: 10.3390/cimb46090570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Wool quality and yield are two important economic livestock traits. However, there are relatively few molecular studies on lncRNA for improving sheep wool, so these require further exploration. In this study, we examined skin tissue from the upper scapula of Super Merino (SM) and Small-Tailed Han (STH) sheep during the growing period. The apparent difference was verified via histological examination. High-throughput RNA sequencing identified differentially expressed (DE) long non-coding (lncRNAs) and messenger RNAs (mRNAs). The target gene of DE lncRNA and DE genes were enrichment analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) was used to verify randomly selected DE lncRNAs and mRNAs. Finally, the DE, RAC2, WNT11, and FZD2 genes, which were enriched in the Wnt signaling pathway, were detected via immunohistochemistry. The results showed that a total of 20,888 lncRNAs and 31,579 mRNAs were identified in the skin tissues of the two sheep species. Among these, 56 lncRNAs and 616 mRNAs were differentially expressed. Through qRT-PCR, the trends in the randomly selected DE genes' expression were confirmed to be aligned with the RNA-seq results. GO and KEGG enrichment analysis showed that DE lncRNA target genes were enriched in GO terms as represented by epidermal and skin development and keratin filature and in KEGG terms as represented by PI3K-Akt, Ras, MAPK, and Wnt signaling pathways, which were related to hair follicle growth and development. Finally, immunohistochemistry staining results indicated that RAC2, WNT11, and FZD2 were expressed in dermal papilla (DP). The lncRNAs MSTRG.9225.1 and MSTRG.98769.1 may indirectly participate in the regulation of hair follicle growth, development, and fiber traits by regulating their respective target genes, LOC114113396(KRTAP15-1), FGF1, and IGF1. In addition, MSTRG.84658.1 may regulate the Wnt signaling pathway involved in the development of sheep hair follicles by targeting RAC2. This study provides a theoretical reference for improving sheep breeding in the future and lays a foundation for further research on the effects of MSTRG.84658.1 and the target gene RAC2 on dermal papilla cells (DPC).
Collapse
Affiliation(s)
- Jiaqi Fu
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Xinyu Zhang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Dan Wang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Wenqing Liu
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Caihong Zhang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Wei Wang
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Wei Fan
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China;
| | - Fuliang Sun
- College of Agriculture, Yanbian University, Yanji 133000, China; (J.F.); (X.Z.); (D.W.); (W.L.); (C.Z.); (W.W.); (W.F.)
| |
Collapse
|
3
|
Wang R, Wang X, Qi Y, Li Y, Na Q, Yuan H, Rong Y, Ao X, Guo F, Zhang L, Liu Y, Shang F, Zhang Y, Wang Y. Genetic diversity analysis of Inner Mongolia cashmere goats (Erlangshan subtype) based on whole genome re-sequencing. BMC Genomics 2024; 25:698. [PMID: 39014331 PMCID: PMC11253418 DOI: 10.1186/s12864-024-10485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Inner Mongolia cashmere goat (IMCG), renowned for its superior cashmere quality, is a Chinese indigenous goat breed that has been developed through natural and artificial selection over a long period. However, recently, the genetic resources of IMCGs have been significantly threatened by the introduction of cosmopolitan goat breeds and the absence of adequate breed protection systems. RESULTS In order to assess the conservation effectiveness of IMCGs and efficiently preserve and utilize the purebred germplasm resources, this study analyzed the genetic diversity, kinship, family structure, and inbreeding of IMCGs utilizing resequencing data from 225 randomly selected individuals analyzed using the Plink (v.1.90), GCTA (v.1.94.1), and R (v.4.2.1) software. A total of 12,700,178 high-quality SNPs were selected through quality control from 34,248,064 SNP sites obtained from 225 individuals. The average minor allele frequency (MAF), polymorphic information content (PIC), and Shannon information index (SHI) were 0.253, 0.284, and 0.530, respectively. The average observed heterozygosity (Ho) and the average expected heterozygosity (He) were 0.355 and 0.351, respectively. The analysis of the identity by state distance matrix and genomic relationship matrix has shown that most individuals' genetic distance and genetic relationship are far away, and the inbreeding coefficient is low. The family structure analysis identified 10 families among the 23 rams. A total of 14,109 runs of homozygosity (ROH) were identified in the 225 individuals, with an average ROH length of 1014.547 kb. The average inbreeding coefficient, calculated from ROH, was 0.026 for the overall population and 0.027 specifically among the 23 rams, indicating a low level of inbreeding within the conserved population. CONCLUSIONS The IMCGs exhibited moderate polymorphism and a low level of kinship with inbreeding occurring among a limited number of individuals. Simultaneously, it is necessary to prevent the loss of bloodline to guarantee the perpetuation of the IMCGs' germplasm resources.
Collapse
Affiliation(s)
- Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xinle Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yunpeng Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanbo Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qin Na
- Inner Mongolia Autonomous Region Agricultural and Animal Husbandry Technology Extension Center, Hohhot, 010010, China
| | - Huiping Yuan
- Bayannur Forestry and Grassland Career Development Center, Bayannur, 015006, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Furong Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lifei Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yan Liu
- College of Vocational and Technical, Inner Mongolia Agricultural University, Baotou, 014109, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, 010018, China.
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, 010018, China.
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, 010018, China.
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
4
|
Peng W, Zhang Y, Gao L, Shi W, Liu Z, Guo X, Zhang Y, Li B, Li G, Cao J, Yang M. Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds. BMC Genomics 2024; 25:420. [PMID: 38684985 PMCID: PMC11057119 DOI: 10.1186/s12864-024-10334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.
Collapse
Affiliation(s)
- Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wanlu Shi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zi Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xinyu Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jingya Cao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| |
Collapse
|
5
|
Wei W, Zhao G, Li Q, Zhang J, Wei H, Shen C, Zhao B, Ji Z, Wang L, Guo Y, Jin P. Botulinum Toxin Type A Alleviates Androgenetic Alopecia by Inhibiting Apoptosis of Dermal Papilla Cells via Targeting circ_0135062/miR-506-3p/Bax Axis. Aesthetic Plast Surg 2024; 48:1473-1486. [PMID: 38286898 DOI: 10.1007/s00266-023-03834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024]
Abstract
Botulinum toxin type A (BTXA) has the potential to treat androgenetic alopecia (AGA); however, its impact on the apoptosis of dermal papillary cells (DPCs) is not yet fully understood. Noncoding RNAs play a crucial role in AGA. In this study, we investigated the potential mechanism by which BTXA alleviates apoptosis induced by dihydrotestosterone (DHT) in DPCs. We assessed the mRNA levels of circ_0135062, miR-506-3p, and Bax using qRT-PCR. Binding interactions were analyzed using RNA pulldown and dual-luciferase assays. Cell viability was determined using a cell counting kit-8 assay, and cell apoptosis was assessed using flow cytometry, TUNEL assays, and western blotting. Our findings revealed that BTXA inhibited the apoptosis of DPCs treated with DHT. Moreover, circ_0135062 overexpression counteracted the protective effect of BTXA on DHT-treated DPCs. MiR-506-3p was found to interact with Bax and inhibit apoptosis in DPCs by suppressing Bax expression in response to DHT-induced damage. Furthermore, circ_0135062 acted as a sponge for miR-506-3p, thereby inhibiting the targeting of Bax expression by miR-506-3p. In conclusion, BTXA exhibited an antiapoptotic effect on DHT-induced DPC injury via the circ_0135062/miR-506-3p/Bax axis.Level of Evidence II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wuhan Wei
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Guoxiang Zhao
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Qiang Li
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Hanxiao Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Caiqi Shen
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Zhe Ji
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China
| | - Linna Wang
- Lanzhou Biotechnique Development Co., Ltd, Lanzhou, Gansu, China
| | - Yanping Guo
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China.
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 Huai-hai West Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
6
|
Kirgiafini D, Kyrgiafini MA, Gournaris T, Mamuris Z. Understanding Circular RNAs in Health, Welfare, and Productive Traits of Cattle, Goats, and Sheep. Animals (Basel) 2024; 14:733. [PMID: 38473119 DOI: 10.3390/ani14050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNA molecules, notable for their covalent closed-loop structures, which play a crucial role in regulating gene expression across a variety of biological processes. This review comprehensively synthesizes the existing knowledge of circRNAs in three key livestock species: Bos taurus (cattle), Ovis aries (sheep), and Capra hircus (goats). It focuses on their functional importance and emerging potential as biomarkers for disease detection, stress response, and overall physiological health. Specifically, it delves into the expression and functionality of circRNAs in these species, paying special attention to traits critical to livestock productivity such as milk production, meat quality, muscle development, wool production, immune responses, etc. We also address the current challenges faced in circRNA research, including the need for standardized methodologies and broader studies. By providing insights into the molecular mechanisms regulated by circRNAs, this review underscores their scientific and economic relevance in the livestock industry. The potential of circRNAs to improve animal health management and the quality of animal-derived products aligns with growing consumer concerns for animal welfare and sustainability. Thus, this paper aims to guide future research directions while supporting the development of innovative strategies in livestock management and breeding.
Collapse
Affiliation(s)
- Dimitra Kirgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
- Averofeio Agri-Food Technological Park of Thessaly, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Theocharis Gournaris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Institute of Animal Genetic Improvement, University Center for Research and Innovation PA.K.E.K. "IASON", University of Thessaly, 38221 Volos, Greece
- Averofeio Agri-Food Technological Park of Thessaly, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| |
Collapse
|
7
|
Gao Y, Duo L, Zhe X, Hao L, Song W, Gao L, Cai J, Liu D. Developmental Mapping of Hair Follicles in the Embryonic Stages of Cashmere Goats Using Proteomic and Metabolomic Construction. Animals (Basel) 2023; 13:3076. [PMID: 37835682 PMCID: PMC10571814 DOI: 10.3390/ani13193076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The hair follicle (HF) is the fundamental unit for fleece and cashmere production in cashmere goats and is crucial in determining cashmere yield and quality. The mechanisms regulating HF development in cashmere goats during the embryonic period remain unclear. Growing evidence suggests that HF development involves complex developmental stages and critical events, and identifying the underlying factors can improve our understanding of HF development. In this study, samples were collected from embryonic day 75 (E75) to E125, the major HF developmental stages. The embryonic HFs of cashmere goats were subjected to proteomic and metabolomic analyses, which revealed dynamic changes in the key factors and signalling pathways controlling HF development at the protein and metabolic levels. Gene ontology and the Kyoto Encyclopaedia of Genes and Genomes were used to functionally annotate 1784 significantly differentially expressed proteins and 454 significantly differentially expressed metabolites enriched in different HF developmental stages. A joint analysis revealed that the oxytocin signalling pathway plays a sustained role in embryonic HF development by activating the MAPK and Ca2+ signalling pathways, and a related regulatory network map was constructed. This study provides a global perspective on the mechanism of HF development in cashmere goats and enriches our understanding of embryonic HF development.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Duo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lingyun Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Weiguo Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lizhong Gao
- Key Laboratory of Cashmere Materials and Engineering Technology in Inner Mongolia Autonomous Region, Ordos 010090, China
| | - Jun Cai
- Key Laboratory of Cashmere Materials and Engineering Technology in Inner Mongolia Autonomous Region, Ordos 010090, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|