1
|
Deng TX, Ma XY, Duan A, Lu XR, Abdel-Shafy H. Genome-wide copy number variant analysis reveals candidate genes associated with milk production traits in water buffalo (Bubalus bubalis). J Dairy Sci 2024; 107:7022-7037. [PMID: 38762109 DOI: 10.3168/jds.2023-24614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/28/2024] [Indexed: 05/20/2024]
Abstract
Buffaloes are vital contributors to the global dairy industry. Understanding the genetic basis of milk production traits in buffalo populations is essential for breeding programs and improving productivity. In this study, we conducted whole-genome resequencing on 387 buffalo genomes from 29 diverse Asian breeds, including 132 river buffaloes, 129 swamp buffaloes, and 126 crossbred buffaloes. We identified 36,548 copy number variants (CNV) spanning 133.29 Mb of the buffalo genome, resulting in 2,100 CNV regions (CNVR), with 1,993 shared CNVR being found within the studied buffalo types. Analyzing CNVR highlighted distinct genetic differentiation between river and swamp buffalo subspecies, verified by evolutionary tree and principal component analyses. Admixture analysis grouped buffaloes into river and swamp categories, with crossbred buffaloes displaying mixed ancestry. To identify candidate genes associated with milk production traits, we employed 3 approaches. First, we used Vst-based population differentiation, revealing 11 genes within CNVR that exhibited significant divergence between different buffalo breeds, including genes linked to milk production traits. Second, expression quantitative loci analysis revealed differentially expressed CNVR-derived genes (DECG) associated with milk production traits. Notably, known milk production-related genes were among these DECG, validating their relevance. Last, a GWAS identified 3 CNVR significantly linked to peak milk yield. Our study provides comprehensive genomic insights into buffalo populations and identifies candidate genes associated with milk production traits. These findings facilitate genetic breeding programs aimed at increasing milk yield and improving quality in this economically important livestock species.
Collapse
Affiliation(s)
- Ting-Xian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| | - Xiao-Ya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Anqin Duan
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xing-Rong Lu
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
2
|
Dang D, Zhang L, Gao L, Peng L, Chen J, Yang L. Analysis of genomic copy number variations through whole-genome scan in Yunling cattle. Front Vet Sci 2024; 11:1413504. [PMID: 39104544 PMCID: PMC11298805 DOI: 10.3389/fvets.2024.1413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Yunling cattle is a new breed of beef cattle bred in Yunnan Province, China, which has the advantages of fast growth, excellent meat quality, improved tolerance ability, and important landscape value. Copy number variation (CNV) is a significant source of gene structural variation and plays a crucial role in evolution and phenotypic diversity. Based on the latest reference genome ARS-UCD2.0, this study analyzed the genome-wide distribution of CNVs in Yunling cattle using short-read whole-genome sequencing data (n = 129) and single-molecule long-read sequencing data (n = 1), and a total of 16,507 CNVs were detected. After merging CNVs with overlapping genomic positions, 3,728 CNV regions (CNVRs) were obtained, accounting for 0.61% of the reference genome. The functional analysis indicated significant enrichment of CNVRs in 96 GO terms and 57 KEGG pathways, primarily related to cell adhesion, signal transduction, neuromodulation, and nutritional metabolism. Additionally, 111 CNVRs overlapped with 76 quantitative trait loci (QTLs), including Subcutaneous fat thickness QTL, Longissimus muscle area QTL, and Marbling score QTL. Several CNVR-overlapping genes, including BZW1, AOX1, and LOC100138449, overlap with regions associated with meat color and quality QTLs. Furthermore, Vst analysis showed that PSMB4, ERICH1, SMC2, and PPP4R3A were highly divergent between Yunling and Brahman cattle. In summary, we have constructed the genomic CNV map of Yunling cattle for the first time using whole-genome resequencing. This provides valuable genetic variation resources for the study of the Yunling cattle genome and contributes to the study of economic traits in Yunling cattle.
Collapse
Affiliation(s)
- Dong Dang
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Lilian Zhang
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Lutao Gao
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Lin Peng
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Jian Chen
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| | - Linnan Yang
- College of Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Engineering Technology Research Center of Agricultural Big Data, Kunming, China
- Yunnan Engineering Research Center for Big Data Intelligent Information Processing of Green Agricultural Products, Kunming, China
| |
Collapse
|
3
|
Wei X, Li S, Yan H, Chen S, Li R, Zhang W, Chao S, Guo W, Li W, Ahmed Z, Lei C, Ma Z. Unraveling genomic diversity and positive selection signatures of Qaidam cattle through whole-genome re-sequencing. Anim Genet 2024; 55:362-376. [PMID: 38480515 DOI: 10.1111/age.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 05/04/2024]
Abstract
Qaidam cattle are a typical Chinese native breed inhabiting northwest China. They bear the characteristics of high cold and roughage tolerance, low-oxygen adaptability and good meat quality. To analyze the genetic diversity of Qaidam cattle, 60 samples were sequenced using whole-genome resequencing technology, along with 192 published sets of whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, North Chinese cattle breeds, East Asian taurine cattle, Eurasian taurine cattle and European taurine cattle as controls. It was found that Qaidam cattle have rich genetic diversity in Bos taurus, but the degree of inbreeding is also high, which needs further protection. The phylogenetic analysis, principal component analysis and ancestral component analysis showed that Qaidam cattle mainly originated from East Asian taurine cattle. Qaidam cattle had a closer genetic relationship with the North Chinese cattle breeds and the least differentiation from Mongolian cattle. Annotating the selection signals obtained by composite likelihood ratio, nucleotide diversity analysis, integrated haplotype score, genetic differentiation index, genetic diversity ratio and cross-population extended haplotype homozygosity methods, several genes associated with immunity, reproduction, meat, milk, growth and adaptation showed strong selection signals. In general, this study provides genetic evidence for understanding the germplasm characteristics of Qaidam cattle. At the same time, it lays a foundation for the scientific and reasonable protection and utilization of genetic resources of Chinese local cattle breeds, which has great theoretical and practical significance.
Collapse
Affiliation(s)
- Xudong Wei
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Shuang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huixuan Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shengmei Chen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Ruizhe Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Weizhong Zhang
- Golmud Animal Husbandry and Veterinary Station of Qinghai Province, Golmud, China
| | - Shengyu Chao
- Agro-Technical Extension and Service Center in Haixi Prefecture of Qinghai Province, Delingha, China
| | - Weixing Guo
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhijie Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| |
Collapse
|
4
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|