1
|
Peng Y, Zhou S, Sun Q, Zhou X, Wang C, Wang Z, Iftakhar T, Zhu Y, Xie S, Chen X, Zhang L, Hu C, Chen Y, Guo A. Bovine NMRAL2 Protein Blunts Nitric Oxide Production and Inflammatory Response in Mycobacterium bovis Infected Bovine Lung Epithelial Cells. Cells 2024; 13:1953. [PMID: 39682702 DOI: 10.3390/cells13231953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (M. tb) and Mycobacterium bovis (M. bovis), remains the leading cause of death from a single infectious agent globally. Intracellular survival is crucial for their virulence; yet, the underlying mechanisms are not fully understood. This study aimed to demonstrate the significance of a previously unannotated bovine gene ENSBTAG00000011305 in M. bovis intracellular survival. This gene was termed NMRAL2_Bovine due to its inclusion of the NmrA domain which has a relation to nitric oxide (NO) production. We used CRISPR/Cas9 to knock out NMRAL2_Bovine in bovine lung epithelial cells and observed a significant decrease in M. bovis-induced cell death and the intracellular bacterial count, alongside increased NO levels. A transcriptome analysis revealed the upregulation of pathways linked to NO, IL-6, and TNF-α production, which was confirmed by the increased expression of iNOS, IL-6, and TNF-α. Correspondingly, Western blotting indicated that key signaling pathways, including NF-κB and MAPK, were activated. In conclusion, our findings determined that NMRAL2_Bovine functions as a negative regulator of the inflammatory response induced by M. bovis infection at the cellular level and, thereby, provide a novel insight into TB pathogenesis and a potential target for developing novel host-directed therapies against TB.
Collapse
Affiliation(s)
- Yongchong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiying Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinjun Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijian Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tahira Iftakhar
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifan Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengsong Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Liebler-Tenorio EM, Wedlich N, Figl J, Köhler H, Ulrich R, Schröder C, Rissmann M, Grode L, Kaufmann SHE, Menge C. Challenge Dose Titration in a Mycobacterium bovis Infection Model in Goats. Int J Mol Sci 2024; 25:9799. [PMID: 39337287 PMCID: PMC11431947 DOI: 10.3390/ijms25189799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Goats are natural hosts of Mycobacterium (M.) bovis, and affected herds can be the cause of significant economic losses. Similarites in disease course and lesions of M. bovis infections in goats and M. tuberculosis in humans make goats good models for human tuberculosis. The aim of this investigation was to characterize M. bovis challenge models in goats. For this, goats were endobronchially inoculated with three doses of M. bovis or culture medium. Clinical signs, shedding, and immune responses were monitored until 146 days post inoculation (dpi). At necropsy, lesions were examined by computed tomography, histology, and bacteriological culture. Infected goats did not develop clinical signs. M. bovis was cultured from feces, but never from nasal swabs. IGRAs were positive from 28 dpi onwards, antibodies at 140 dpi, and SICCT at 146 dpi. The increase in CD25+, IFN-γ+, and IFN-γ-releasing T-cell subpopulations was time-related, but not dose-dependent. All infected goats developed paucibacillary granulomas in the lungs and regional lymph nodes. M. bovis was regularly cultured. Dose-dependent effects included the size of pulmonary lesions, caverns, intestinal lesions, and early generalization in the high-dose group. In summary, reproducible challenge models with dose-dependent differences in lesions were established, which may serve for testing vaccines for veterinary or medical use.
Collapse
Affiliation(s)
- Elisabeth M. Liebler-Tenorio
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (R.U.); (C.S.); (M.R.)
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (R.U.); (C.S.); (M.R.)
| | - Melanie Rissmann
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (R.U.); (C.S.); (M.R.)
| | - Leander Grode
- Serum Life Science Europe GmbH, 30659 Hannover, Germany;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany; (N.W.); (J.F.); (H.K.); (C.M.)
| |
Collapse
|
3
|
Rodríguez-Míguez Y, Lozano-Ordaz V, Ortiz-Cabrera AE, Barrios-Payan J, Mata-Espinosa D, Huerta-Yepez S, Baay-Guzman G, Hernández-Pando R. Effect of IL-17A on the immune response to pulmonary tuberculosis induced by high- and low-virulence strains of Mycobacterium bovis. PLoS One 2024; 19:e0307307. [PMID: 39024223 PMCID: PMC11257284 DOI: 10.1371/journal.pone.0307307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Tuberculosis (TB) is an infectious, chronic, and progressive disease occurring globally. Human TB is caused mainly by Mycobacterium tuberculosis (M. tuberculosis), while the main causative agent of bovine TB is Mycobacterium bovis (M. bovis). The latter is one of the most important cattle pathogens and is considered the main cause of zoonotic TB worldwide. The mechanisms responsible for tissue damage (necrosis) during post-primary TB remain elusive. Recently, IL-17A was reported to be important for protection against M. tuberculosis infection, but it is also related to the production of an intense inflammatory response associated with necrosis. We used two M. bovis isolates with different levels of virulence and high IL-17A production to study this important cytokine's contrasting functions in a BALB/c mouse model of pulmonary TB. In the first part of the study, the gene expression kinetics and cellular sources of IL-17A were determined by real time PCR and immunohistochemistry respectively. Non-infected lungs showed low production of IL-17A, particularly by the bronchial epithelium, while lungs infected with the low-virulence 534 strain showed high IL-17A expression on Day 3 post-infection, followed by a decrease in expression in the early stage of the infection and another increase during late infection, on Day 60, when very low bacillary burdens were found. In contrast, infection with the highly virulent strain 04-303 induced a peak of IL-17A expression on Day 14 of infection, 1 week before extensive pulmonary necrosis was seen, being lymphocytes and macrophages the most important sources. In the second part of the study, the contribution of IL-17A to immune protection and pulmonary necrosis was evaluated by suppressing IL-17A via the administration of specific blocking antibodies. Infection with M. bovis strain 534 and treatment with IL-17A neutralizing antibodies did not affect mouse survival but produced a significant increase in bacillary load and a non-significant decrease in inflammatory infiltrate and granuloma area. In contrast, mice infected with the highly virulent 04-303 strain and treated with IL-17A blocking antibodies showed a significant decrease in survival, an increase in bacillary loads on Day 24 post-infection, and significantly more and earlier necrosis. Our results suggest that high expression of IL-17A is more related to protection than necrosis in a mouse model of pulmonary TB induced by M. bovis strains.
Collapse
Affiliation(s)
- Yadira Rodríguez-Míguez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Vasti Lozano-Ordaz
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Angel E. Ortiz-Cabrera
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Guillermina Baay-Guzman
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| |
Collapse
|
4
|
Li C, Wang J, Xu JF, Pi J, Zheng B. Roles of HIF-1α signaling in Mycobacterium tuberculosis infection: New targets for anti-TB therapeutics? Biochem Biophys Res Commun 2024; 711:149920. [PMID: 38615574 DOI: 10.1016/j.bbrc.2024.149920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Tuberculosis (TB), a deadly infectious disease induced by Mycobacterium tuberculosis (Mtb), continues to be a global public health issue that kill millions of patents every year. Despite significant efforts have been paid to identify effective TB treatments, the emergence of drug-resistant strains of the disease and the presence of comorbidities in TB patients urges us to explore the detailed mechanisms involved in TB immunity and develop more effective innovative anti-TB strategies. HIF-1α, a protein involved in regulating cellular immune responses during TB infection, has been highlighted as a promising target for the development of novel strategies for TB treatment due to its critical roles in anti-TB host immunity. This review provides a summary of current research progress on the roles of HIF-1α in TB infection, highlighting its importance in regulating the host immune response upon Mtb infection and summarizing the influences and mechanisms of HIF-1α on anti-TB immunological responses of host cells. This review also discusses the various challenges associated with developing HIF-1α as a target for anti-TB therapies, including ensuring specificity and avoiding off-target effects on normal cell function, determining the regulation and expression of HIF-1α in TB patients, and developing drugs that can inhibit HIF-1α. More deep understanding of the molecular mechanisms involved in HIF-1α signaling, its impact on TB host status, and systematic animal testing and clinical trials may benefit the optimization of HIF-1α as a novel therapeutic target for TB.
Collapse
Affiliation(s)
- Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Biying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| |
Collapse
|
5
|
Kolloli A, Kumar R, Venketaraman V, Subbian S. Immunopathology of Pulmonary Mycobacterium tuberculosis Infection in a Humanized Mouse Model. Int J Mol Sci 2024; 25:1656. [PMID: 38338937 PMCID: PMC10855034 DOI: 10.3390/ijms25031656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Despite the availability of antibiotic therapy, tuberculosis (TB) is prevailing as a leading killer among human infectious diseases, which highlights the need for better intervention strategies to control TB. Several animal model systems, including mice, guinea pigs, rabbits, and non-human primates have been developed and explored to understand TB pathogenesis. Although each of these models contributes to our current understanding of host-Mycobacterium tuberculosis (Mtb) interactions, none of these models fully recapitulate the pathological spectrum of clinical TB seen in human patients. Recently, humanized mouse models are being developed to improvise the limitations associated with the standard mouse model of TB, including lack of necrotic caseation of granulomas, a pathological hallmark of TB in humans. However, the spatial immunopathology of pulmonary TB in humanized mice is not fully understood. In this study, using a novel humanized mouse model, we evaluated the spatial immunopathology of pulmonary Mtb infection with a low-dose inoculum. Humanized NOD/LtSscidIL2Rγ null mice containing human fetal liver, thymus, and hematopoietic CD34+ cells and treated with human cytokines were aerosol challenged to implant <50 pathogenic Mtb (low dose) in the lungs. At 2 and 4 weeks post infection, the tissue bacterial load, disease pathology, and spatial immunohistology were determined in the lungs, liver, spleen, and adipose tissue using bacteriological, histopathological, and immunohistochemical techniques. The results indicate that implantation of <50 bacteria can establish a progressive disease in the lungs that transmits to other tissues over time. The disease pathology in organs correspondingly increased with the bacterial load. A distinct spatial distribution of T cells, macrophages, and natural killer cells were noted in the lung granulomas. The kinetics of spatial immune cell distribution were consistent with the disease pathology in the lungs. Thus, the novel humanized model recapitulates several key features of human pulmonary TB granulomatous response and can be a useful preclinical tool to evaluate potential anti-TB drugs and vaccines.
Collapse
Affiliation(s)
- Afsal Kolloli
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|