1
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
2
|
Gonçalves AP, Almeida LT, de Rezende IM, Fradico JRB, Pereira LS, Ramalho DB, Pascoal Xavier MA, Calzavara Silva CE, Monath TP, LaBeaud AD, Drumond BP, Campi-Azevedo AC, Martins-Filho OA, Teixeira-Carvalho A, Alves PA. Evaluation of humoral immune response after yellow fever infection: an observational study on patients from the 2017-2018 sylvatic outbreak in Brazil. Microbiol Spectr 2024; 12:e0370323. [PMID: 38511952 PMCID: PMC11064539 DOI: 10.1128/spectrum.03703-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Between 2016 and 2018, Brazil experienced major sylvatic yellow fever (YF) outbreaks that caused hundreds of casualties, with Minas Gerais (MG) being the most affected state. These outbreaks provided a unique opportunity to assess the immune response triggered by the wild-type (WT) yellow fever virus (YFV) in humans. The plaque reduction neutralization test (PRNT) is currently the standard method to assess the humoral immune response to YFV by measuring neutralizing antibodies (nAbs). The present study aimed to evaluate the humoral immune response of patients from the 2017-2018 sylvatic YF outbreak in MG with different disease outcomes by using PRNTs with a WT YFV strain, isolated from the 2017-2018 outbreak, and a vaccine YFV strain. Samples from naturally infected YF patients were tested, in comparison with healthy vaccinees. Results showed that both groups presented different levels of nAb against the WT and vaccine strains, and the levels of neutralization against the strains varied homotypically and heterotypically. Results based on the geometric mean titers (GMTs) suggest that the humoral immune response after a natural infection of YFV can reach higher levels than that induced by vaccination (GMT of patients against WT YFV compared to GMT of vaccinees, P < 0.0001). These findings suggest that the humoral immune responses triggered by the vaccine and WT strains of YFV are different, possibly due to genetic and antigenic differences between these viruses. Therefore, current means of assessing the immune response in naturally infected YF individuals and immunological surveillance methods in areas with intense viral circulation may need to be updated.IMPORTANCEYellow fever is a deadly febrile disease caused by the YFV. Despite the existence of effective vaccines, this disease still represents a public health concern worldwide. Much is known about the immune response against the vaccine strains of the YFV, but recent studies have shown that it differs from that induced by WT strains. The extent of this difference and the mechanisms behind it are still unclear. Thus, studies aimed to better understand the immune response against this virus are relevant and necessary. The present study evaluated levels of neutralizing antibodies of yellow fever patients from recent outbreaks in Brazil, in comparison with healthy vaccinees, using plaque reduction neutralization tests with WT and vaccine YFV strains. Results showed that the humoral immune response in naturally infected patients was higher than that induced by vaccination, thus providing new insights into the immune response triggered against these viruses.
Collapse
Affiliation(s)
| | - Letícia Trindade Almeida
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Maurício de Rezende
- Department of Pediatrics, Infectious Disease Division, Stanford University School of Medicine, Stanford, California, USA
| | | | - Leonardo Soares Pereira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Hospital Eduardo de Menezes (HEM), Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Dario Brock Ramalho
- Hospital Eduardo de Menezes (HEM), Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Antônio Pascoal Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Angelle Desiree LaBeaud
- Department of Pediatrics, Infectious Disease Division, Stanford University School of Medicine, Stanford, California, USA
| | - Betania Paiva Drumond
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Andréa Teixeira-Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Augusto Alves
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Grupo de Estudos de Pesquisa e Resposta em Febre Amarela do Estado de Minas Gerais
- Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
- Department of Pediatrics, Infectious Disease Division, Stanford University School of Medicine, Stanford, California, USA
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Hospital Eduardo de Menezes (HEM), Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Crozet BioPharma LLC, Lexington, Massachusetts, USA
| |
Collapse
|
3
|
Kazakova E, Lane TR, Jones T, Puhl AC, Riabova O, Makarov V, Ekins S. 1-Sulfonyl-3-amino-1 H-1,2,4-triazoles as Yellow Fever Virus Inhibitors: Synthesis and Structure-Activity Relationship. ACS OMEGA 2023; 8:42951-42965. [PMID: 38024733 PMCID: PMC10653066 DOI: 10.1021/acsomega.3c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Yellow fever virus (YFV) transmitted by infected mosquitoes causes an acute viral disease for which there are no approved small-molecule therapeutics. Our recently developed machine learning models for YFV inhibitors led to the selection of a new pyrazolesulfonamide derivative RCB16003 with acceptable in vitro activity. We report that the N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine class, which was recently identified as active non-nucleoside reverse transcriptase inhibitors against HIV-1, can also be repositioned as inhibitors of yellow fever virus replication. As compared to other Flaviviridae or Togaviridae family viruses tested, both compounds RCB16003 and RCB16007 demonstrate selectivity for YFV over related viruses, with only RCB16007 showing some inhibition of the West Nile virus (EC50 7.9 μM, CC50 17 μM, SI 2.2). We also describe the absorption, distribution, metabolism, and excretion (ADME) in vitro and pharmacokinetics (PK) for RCB16007 in mice. This compound had previously been shown to not inhibit hERG, and we now describe that it has good metabolic stability in mouse and human liver microsomes, low levels of CYP inhibition, high protein binding, and no indication of efflux in Caco-2 cells. A single-dose oral PK study in mice has a T1/2 of 3.4 h and Cmax of 1190 ng/mL, suggesting good availability and stability. We now propose that the N-phenyl-1-(phenylsulfonyl)-1H-1,2,4-triazol-3-amine class may be prioritized for in vivo efficacy testing against YFV.
Collapse
Affiliation(s)
- Elena Kazakova
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thane Jones
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Vadim Makarov
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|