1
|
Fan YY, Luo RY, Wang MT, Yuan CY, Sun YY, Jing JY. Mechanisms underlying delirium in patients with critical illness. Front Aging Neurosci 2024; 16:1446523. [PMID: 39391586 PMCID: PMC11464339 DOI: 10.3389/fnagi.2024.1446523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Delirium is an acute, global cognitive disorder syndrome, also known as acute brain syndrome, characterized by disturbance of attention and awareness and fluctuation of symptoms. Its incidence is high among critically ill patients. Once patients develop delirium, it increases the risk of unplanned extubation, prolongs hospital stay, increases the risk of nosocomial infection, post-intensive care syndrome-cognitive impairment, and even death. Therefore, it is of great importance to understand how delirium occurs and to reduce the incidence of delirium in critically ill patients. This paper reviews the potential pathophysiological mechanisms of delirium in critically ill patients, with the aim of better understanding its pathophysiological processes, guiding the formulation of effective prevention and treatment strategies, providing a basis for clinical medication.
Collapse
Affiliation(s)
- Ying-Ying Fan
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruo-Yu Luo
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meng-Tian Wang
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao-Yun Yuan
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan-Yuan Sun
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ji-Yong Jing
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Hao T, Tsang YP, Yin M, Mao Q, Unadkat JD. Dysregulation of Human Hepatic Drug Transporters by Proinflammatory Cytokines. J Pharmacol Exp Ther 2024; 391:82-90. [PMID: 39103232 DOI: 10.1124/jpet.123.002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Proinflammatory cytokines, elevated during inflammation caused by infection and/or autoimmune disorders, result in reduced clearance of drugs eliminated primarily by cytochrome P450 enzymes (CYPs). However, the effect of cytokines on hepatic drug transporter expression or activity has not been well-studied. Here, using plated human hepatocytes (PHHs; n = 3 lots), we investigated the effect of interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), on the mRNA expression and activity of hepatic drug transporters. PHHs were incubated for 72 hours at their pathophysiologically relevant plasma concentrations, both individually (0.01, 0.1, 1, 10 ng/ml) or as a cocktail (i.e., when each was combined at 0.1 or 1 ng/ml). Following cytokine cocktail exposure (1 ng/ml), significant downregulation of mRNA expression of organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, sodium/taurocholate cotransporting polypeptide (NTCP), breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), multidrug and toxin extrusion protein 1, multidrug resistance proteins (MRP) 2, 3, and 4 was observed. While the mRNA expression of organic anion transporter (OAT) 2 and organic cation transporter (OCT) 1 was downregulated in two lots, it was upregulated in one lot. In agreement (mostly), the 1 ng/ml cytokine cocktail reduced OATP1B1/3, OATP2B1, OAT2, OCT1, and NTCP activity by 75%, 44%, 82%, 47%, and 80%, respectively. Interestingly, upregulation of OAT2 and OCT1 mRNA in one donor did not translate into the same directional change in activity. Although significant interlot variability was observed, in general, the above effects, using individual cytokines, could be attributed to IL-1β, TNF-α, and IFN-γ. SIGNIFICANCE STATEMENT: To date, this is the first comprehensive study to investigate the effect of four major proinflammatory cytokines, both individually and as a cocktail, on the mRNA expression and activity of human hepatic drug transporters. The data obtained can be used in the future to predict transporter-mediated drug clearance changes during inflammation through physiologically based pharmacokinetic modeling and simulation.
Collapse
Affiliation(s)
- Tianran Hao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Yik Pui Tsang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Mengyue Yin
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Ahmed H, Böhmdorfer M, Eberl S, Jäger W, Zeitlinger M. Interspecies variability in protein binding of antibiotics basis for translational PK/PD studies-a case study using cefazolin. Antimicrob Agents Chemother 2024; 68:e0164723. [PMID: 38376186 PMCID: PMC10989014 DOI: 10.1128/aac.01647-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
For antimicrobial agents in particular, plasma protein binding (PPB) plays a pivotal role in deciphering key properties of drug candidates. Animal models are generally used in the preclinical development of new drugs to predict their effects in humans using translational pharmacokinetics/pharmacodynamics (PK/PD). Thus, we compared the protein binding (PB) of cefazolin as well as bacterial growth under various conditions in vitro. The PB extent of cefazolin was studied in human, bovine, and rat plasmas at different antibiotic concentrations in buffer and media containing 20-70% plasma or pure plasma using ultrafiltration (UF) and equilibrium dialysis (ED). Moreover, bacterial growth and time-kill assays were performed in Mueller Hinton Broth (MHB) containing various plasma percentages. The pattern for cefazolin binding to plasma proteins was found to be similar for both UF and ED. There was a significant decrease in cefazolin binding to bovine plasma compared to human plasma, whereas the pattern in rat plasma was more consistent with that in human plasma. Our growth curve analysis revealed considerable growth inhibition of Escherichia coli at 70% bovine or rat plasma compared with 70% human plasma or pure MHB. As expected, our experiments with cefazolin at low concentrations showed that E. coli grew slightly better in 20% human and rat plasma compared to MHB, most probably due to cefazolin binding to proteins in the plasma. Based on the example of cefazolin, our study highlights the interspecies differences of PB with potential impact on PK/PD. These findings should be considered before preclinical PK/PD data can be extrapolated to human patients.
Collapse
Affiliation(s)
- Hifza Ahmed
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy, University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Mahmoud SH, Hefny F, Isse FA, Farooq S, Ling S, O'Kelly C, Kutsogiannis DJ. Nimodipine systemic exposure and outcomes following aneurysmal subarachnoid hemorrhage: a pilot prospective observational study (ASH-1 study). Front Neurol 2024; 14:1233267. [PMID: 38249736 PMCID: PMC10796587 DOI: 10.3389/fneur.2023.1233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Background Nimodipine improves outcomes following aneurysmal subarachnoid hemorrhage (aSAH). Guidelines recommend that all patients should receive a fixed-dose nimodipine for 21 days. However, studies reported variability of nimodipine concentrations in aSAH. It is not clear if reduced systemic exposure contributes to worsening outcomes. The aim of this study was to compare nimodipine systemic exposure in those who experienced poor outcomes to those who experienced favorable outcomes. Methods This was a pilot prospective observational study in 30 adult patients admitted to the University of Alberta Hospital with aSAH. Data were collected from the electronic health records following enrollment. Blood samples were collected around one nimodipine 60 mg dose at a steady state, and nimodipine [total, (+)-R and (-)-S enantiomers] plasma concentrations were determined. The poor outcome was defined as a modified Rankin Scale (mRS) score at 90 days of 3-6, while the favorable outcome was an mRS score of 0-2. The correlation between nimodipine concentrations and percent changes in mean arterial pressure (MAP) before and after nimodipine administration was also determined. Furthermore, covariates potentially associated with nimodipine exposure were explored. Results In total, 20 (69%) participants had favorable outcomes and 9 (31%) had poor outcomes. Following the exclusion of those with delayed presentation (>96 h from aSAH onset), among those presented with the World Federation of Neurological Surgeons (WFNS) grade 3-5, nimodipine median (interquartile range) area under the concentration time curve (AUC0-3h) in those with favorable outcomes were 4-fold higher than in those with poor outcomes [136 (52-192) vs. 33 (23-39) ng.h/mL, respectively, value of p = 0.2]. On the other hand, among those presented with WFNS grade 1-2, nimodipine AUC0-3h in those with favorable outcomes were significantly lower than in those with poor outcomes [30 (28-36) vs. 172 (117-308) ng.h/mL, respectively, value of p = 0.03)]. (+)-R-nimodipine AUC0-3h in those who did not develop vasospasm were 4-fold significantly higher than those who had vasospasm (value of p = 0.047). (-)-S-nimodipine was significantly correlated with percentage MAP reduction. Similar results were obtained when the whole cohort was analyzed. Conclusion The study was the first to investigate the potential association between nimodipine exposure following oral dosing and outcomes. In addition, it suggests differential effects of nimodipine enantiomers, shedding light on the potential utility of nimodipine enantiomers. Larger studies are needed.
Collapse
Affiliation(s)
- Sherif Hanafy Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fatma Hefny
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shahmeer Farooq
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Spencer Ling
- Pharmacy Services, University of Alberta Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Cian O'Kelly
- Vascular, Endovascular and General Neurosurgery, Division of Neurosurgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Demetrios James Kutsogiannis
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Torres-Carrillo N, Martínez-López E, Torres-Carrillo NM, López-Quintero A, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Hurtado IA. Pharmacomicrobiomics and Drug-Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int J Mol Sci 2023; 24:17100. [PMID: 38069427 PMCID: PMC10707377 DOI: 10.3390/ijms242317100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Microorganisms have a close relationship with humans, whether it is commensal, symbiotic, or pathogenic. Recently, it has been documented that microorganisms may influence the response to drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers to modifications in the microbiome as a result of drug administration. In this context, we introduce the concept of "drug-infection interaction" to describe the influence of pathogenic microorganisms on drug response. This review analyzes the current state of knowledge regarding the relevance of microorganisms in the host's response to drugs. It also highlights promising areas for future research and proposes the term "drug-infection interaction" as an extension of pharmacomicrobiomics.
Collapse
Affiliation(s)
- Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Andres López-Quintero
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Anahí González-Mercado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|