1
|
Khodakarami A, Kashani MA, Nazer A, Kheshti AM, Rashidi B, Karpisheh V, Masjedi A, Abolhasani S, Izadi S, Bagherifar R, Hejazian SS, Mohammadi H, Movassaghpour A, Feizi AAH, Hojjat-Farsangi M, Jadidi-Niaragh F. Targeted Silencing of NRF2 by rituximab-conjugated nanoparticles increases the sensitivity of chronic lymphoblastic leukemia cells to Cyclophosphamide. Cell Commun Signal 2023; 21:188. [PMID: 37528446 PMCID: PMC10391779 DOI: 10.1186/s12964-023-01213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Targeting influential factors in resistance to chemotherapy is one way to increase the effectiveness of chemotherapeutics. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway overexpresses in chronic lymphocytic leukemia (CLL) cells and appears to have a significant part in their survival and chemotherapy resistance. Here we produced novel nanoparticles (NPs) specific for CD20-expressing CLL cells with simultaneous anti-Nrf2 and cytotoxic properties. METHODS Chitosan lactate (CL) was used to produce the primary NPs which were then respectively loaded with rituximab (RTX), anti-Nrf2 Small interfering RNA (siRNAs) and Cyclophosphamide (CP) to prepare the final version of the NPs (NP-Nrf2_siRNA-CP). All interventions were done on both peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMNCs). RESULTS NP-Nrf2_siRNA-CP had satisfying physicochemical properties, showed controlled anti-Nrf2 siRNA/CP release, and were efficiently transfected into CLL primary cells (both PBMCs and BMNCs). NP-Nrf2_siRNA-CP were significantly capable of cell apoptosis induction and proliferation prevention marked by respectively decreased and increased anti-apoptotic and pro-apoptotic factors. Furthermore, use of anti-Nrf2 siRNA was corresponding to elevated sensitivity of CLL cells to CP. CONCLUSION Our findings imply that the combination therapy of malignant CLL cells with RTX, CP and anti-Nrf2 siRNA is a novel and efficient therapeutic strategy that was capable of destroying malignant cells. Furthermore, the use of NPs as a multiple drug delivery method showed fulfilling properties; however, the need for further future studies is undeniable. Video Abstract.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Atefeh Nazer
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Masjedi
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafieh Bagherifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - AliAkbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Reinhardt B, Lee P, Sasine JP. Chimeric Antigen Receptor T-Cell Therapy and Hematopoiesis. Cells 2023; 12:531. [PMID: 36831198 PMCID: PMC9954220 DOI: 10.3390/cells12040531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy is a promising treatment option for patients suffering from B-cell- and plasma cell-derived hematologic malignancies and is being adapted for the treatment of solid cancers. However, CAR T is associated with frequently severe toxicities such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), macrophage activation syndrome (MAS), and prolonged cytopenias-a reduction in the number of mature blood cells of one or more lineage. Although we understand some drivers of these toxicities, their mechanisms remain under investigation. Since the CAR T regimen is a complex, multi-step process with frequent adverse events, ways to improve the benefit-to-risk ratio are needed. In this review, we discuss a variety of potential solutions being investigated to address the limitations of CAR T. First, we discuss the incidence and characteristics of CAR T-related cytopenias and their association with reduced CAR T-cell efficacy. We review approaches to managing or mitigating cytopenias during the CAR T regimen-including the use of growth factors, allogeneic rescue, autologous hematopoietic stem cell infusion, and alternative conditioning regimens. Finally, we introduce novel methods to improve CAR T-cell-infusion products and the implications of CAR T and clonal hematopoiesis.
Collapse
Affiliation(s)
- Bryanna Reinhardt
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick Lee
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua P. Sasine
- Department of Medicine, Division of Hematology and Cellular Therapy, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|